
UNDER REVIEW

R E S C I E N C E C
Regular / Image Processing

Reproduction of ODP-PIV from the 1998 “Particle Image
Velocimetry with Optical Flow” paper

Georges Quénot1, ID
1Univ. Grenoble Alpes, CNRS, Grenoble-INP, LIG, F-38000 Grenoble France

Edited by
(Editor)

Reviewed by
(Reviewer 1)
(Reviewer 2)

Received
—

Published
—

DOI
—

1 Introduction

In this paper, I report the reproduction of the experiments with the ODP-PIVmethod de-
scribed in the 1998 article entitled “Particle Image Velocimetry with Optical Flow” that I
published in Experiments in Fluids1 (200+ citations) withmy colleagues Jaroslav Pakleza
fromLIMSI and Tomasz Kowalewski from IPPT-PAN, nowboth retired. Thiswas the first
time that a dense Optical Flow (OF) technique was applied for Particle Image Velocime-
try (PIV) which was so far mostly processed only using block correlation, producing
velocity vectors at the block resolution (typically 32× 32). This was an interdisciplinary
work betweenmy colleagueswhowere involved in velocitymeasurements in fluids flows
andmyself who was involved at the time in image and video processing. This was eased
by the fact that the LIMSI laboratory hosted two departments, one dedicated to physics
(mechanics) and another dedicated to computer science (human-machine communica-
tion). The reproduction was successful and the corresponding code and data are avail-
able from https://github.com/quenot/opflow/tree/master/jeif98

2 Particle Image Velocimetry (PIV)

Particle Image Velocimetry is a technique formeasuring velocities in fluid flows by seed-
ing a fluid with small light-reflecting particles and recording two or more digital images
while a plane in the fluid is illuminated by a light sheet produced by a pulsed laser.
Tracking the transported particle patterns across an image pair or a longer sequence
provides an estimation of the velocities in the fluid. Figure 1 shows typical particle im-
age, a superimposed sequence of the same particle images, and a visualization of the
flowfield extractedwith the proposedmethod froma sequence of four such images1. Be-
fore the use of optical flow popularized by this work, the standard approach was to use
FFT-based block correlation with significant drawbacks in terms of spatial resolution,
velocity accuracy and robustness.

3 Orthogonal Dynamic Programming (ODP) for imagematching and flow
estimation

The optical flow technique used in this work was not a mainstream one but one that
I developed previously for image matching and for flow estimation in videos. This

Copyright © 2020 G. Quénot, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Georges Quénot (Georges.Quenot@imag.fr)
The authors have declared that no competing interests exists.
Code is available at https://github.com/quenot/opflow/tree/master/jeif98.

ReScience C – Quénot 2020 1

https://orcid.org/0000-0003-2117-247X
https://github.com/quenot/opflow/tree/master/jeif98
mailto:Georges.Quenot@imag.fr
https://github.com/quenot/opflow/tree/master/jeif98
https://rescience.github.io/


Reproduction of ODP-PIV from the 1998 “Particle Image Velocimetry with Optical Flow” paper UNDER REVIEW

Figure 1. Principle of PIV. Left: typical particle image, middle: a superimposed sequence of the
same particle images, right: a visualization of the flow field extracted with the ODP-PIV method
from a sequence of four such images (non-linear velocity scale: small velocities are enlarged com-
pared to large ones).

method was based on the use of Dynamic Programming (DP) and was inspired by the
Dynamic Time Warping (DTW) method that was used in speech recognition. DTW is
able to perform optimal alignments in one direction only, typically between sonograms
(time×frequency decomposition of an audio signal) along the time axis. The extension
that I proposed of it made it possible to use it for (quasi-)optimal alignments in two
directions via a carefully selected sequence of alternated horizontal and vertical align-
ments2,3. In reference to the use of alternate iterations in orthogonal directions, the
methodwas called “Orthogonal Dynamic Programming” (ODP). Though this optical flow
detectionmethodwasnot amainstreamone, itwas onparwith suchmethods at the time
of its first application to PIV.

4 Application to Particle Image Velocimetry (ODP-PIV)

The ODP method has been applied to different problems since it was developed includ-
ing 3D reconstruction and video segmentation for instance but here we are concerned
by (the reproduction of) its first application to Particle Image Velocimetry (ODP-PIV).
Our 1998 article compared the ODP-PIVmethodwith a state-of-the-art block-correlation-
based one. Both methods were applied to synthetic image sequences with known veloc-
ities for quantitative error evaluation, and on real image sequences for a visual estima-
tion of the robustness and density of the obtained vector fields. This article reports
only the reproduction of the results obtained using the dense optical flow estimation
technique. The results for the classical DPIV method were obtained by my colleague
Tomasz Kowalevski for which I never had the code.

5 Reproduction of the results

The ODP-PIV softwarewas fully written in ANSI Cwithout the use of any external library
or other tool. This is probably why it did compile without any problem and produced
the same results with only sometimes some rounding differences (more on this below).

5.1 Quantitative results on synthetic images
Synthetic particle 800× 400 4-image sequences were generated in calibrated conditions.
The average displacement between consecutive images is of 7.58 pixels. Conditions in-
clude perfect synthesis (neither noise nor particle appearance or disappearance), addi-
tive noise at various levels, appearance and disappearance of particles at various rates
(in order to simulate out of plane motion effects) and combinations of both. Table 1

ReScience C – Quénot 2020 2

https://rescience.github.io/


Reproduction of ODP-PIV from the 1998 “Particle Image Velocimetry with Optical Flow” paper UNDER REVIEW

shows the velocity error in pixel/frame for two variants of the classical correlation-based
PIV method, with block sizes of 32× 32 and 48× 48 and three variants for the ODP-PIV
method, one using only two images and two using the four available images. These re-
sults are commented in detail in the original article but ODP-PIV was the clear winner.

DPIV32 DPIV48 ODP2 ODP4S ODP4M
Perfect 0.55± 0.94 0.87± 1.46 0.13± 0.10 0.13± 0.54 0.07± 0.07
Noise 5% 0.61± 1.18 0.86± 1.49 0.21± 0.46 0.10± 0.13 0.08± 0.08
Noise 10% 0.77± 1.57 0.91± 1.59 0.53± 1.44 0.17± 0.53 0.11± 0.09
Noise 20% 3.11± 4.14 2.06± 2.88 0.88± 1.58 0.30± 0.68 0.20± 0.14
Add/rm 5% 0.55± 0.90 0.86± 1.45 0.14± 0.11 0.08± 0.11 0.07± 0.08
Add/rm 10% 0.55± 0.93 0.87± 1.47 0.34± 1.28 0.14± 0.56 0.08± 0.09
Add/rm 20% 0.56± 0.99 0.88± 1.52 0.16± 0.12 0.18± 0.69 0.10± 0.10
Mixed 5% 0.60± 1.12 0.86± 1.51 0.20± 0.13 0.15± 0.53 0.09± 0.08
Mixed 10% 0.91± 1.89 0.93± 1.66 0.57± 1.71 0.20± 0.59 0.13± 0.11
Mixed 20% 3.73± 4.39 2.49± 3.19 0.74± 0.52 0.43± 1.08 0.27± 0.22

Table 1. Original results (table 2 in the original article1): absolute displacement error with a mean
displacement module of 7.58 pixels/frame. Errors are displayed as mean ± standard deviation.

Table 2 shows the reproduced results using the GNU compiler (gcc) and the Intel com-
piler (icc). As can be seen, the results are exactly the same with the GNU compiler even
though the architecture (R4400), the operating system (SGI) and the compiler (acc) were
different. After investigation, it turned out that the differences using the Intel compiler
were due to the use of the single-instruction multiply-add operation with intermediate
result (between the multiplication and the addition) being performed using more sig-
nificant bits. When this default behavior is turned off, the results become identical to
those obtained with the GNU compiler. In principle, the default behavior of the Intel
compiler leads to a better accuracy in the computations. As can be seen in the table, the
results are sometimes better (in green), sometimes worse (in red) and often unchanged.
The differences are sometimes quite important. I think that this is due to the principle
of dynamic programming that chooses the alignment path with the smallest cost. Some
tiny (“microscopic”) differences in path costs may turn into significant (“macroscopic”)
differences in paths. The overall algorithm involves a lot of such path selections and
it suffices that one very small instability be sampled once to produce a “macroscopic”
change. In practice, such instabilities sometimes increase and sometimes decrease the
performance with no clear global trend. This could be a hint about how to improve the
method, were it not now obsolete.

GNU compiler Intel compiler
ODP2 ODP4S ODP4M ODP2 ODP4S ODP4M

0.13± 0.10 0.13± 0.54 0.07± 0.07 0.13± 0.10 0.13± 0.55 0.07± 0.07
0.21± 0.46 0.10± 0.13 0.08± 0.08 0.21± 0.46 0.10± 0.11 0.09± 0.08
0.53± 1.44 0.17± 0.53 0.11± 0.09 0.28± 0.18 0.17± 0.51 0.11± 0.09
0.88± 1.58 0.30± 0.68 0.20± 0.14 0.83± 1.36 0.29± 0.65 0.21± 0.23
0.14± 0.11 0.08± 0.11 0.07± 0.08 0.14± 0.11 0.08± 0.10 0.07± 0.08
0.34± 1.28 0.14± 0.56 0.08± 0.09 0.34± 1.29 0.14± 0.56 0.08± 0.09
0.16± 0.12 0.18± 0.69 0.10± 0.10 0.16± 0.12 0.18± 0.70 0.09± 0.10
0.20± 0.13 0.15± 0.53 0.09± 0.08 0.20± 0.13 0.15± 0.56 0.09± 0.08
0.57± 1.71 0.20± 0.59 0.13± 0.11 0.59± 1.67 0.20± 0.59 0.13± 0.11
0.74± 0.52 0.43± 1.08 0.27± 0.22 0.92± 1.36 0.40± 0.94 0.27± 0.18

Table 2. Reproduced results using the GNU (left) and Intel (right) compilers

ReScience C – Quénot 2020 3

https://rescience.github.io/


Reproduction of ODP-PIV from the 1998 “Particle Image Velocimetry with Optical Flow” paper UNDER REVIEW

The other quantitative results (typically with higher velocities) from the original paper
were also successfully reproduced.

5.2 Visual results on synthetic images
We also reproduced the visual results with one difficulty which was related to the visual-
ization software which was the only external component that we used in the paper. This
tool had two problems, one was that it did not manage the big-endian and little-endian
differences across processor architectures (unlike themain ODP-PIV software that relies
on htonl() and ntohl() for that) and a bounding box problem in the postscript file
generation. This was manually fixed either in the code or in the generated flow fields
and it was possible to generate flow fields that are visually indistinguishable from those
displayed in the original paper.

5.3 Results on real images
Only visual results were reproduced regarding the real images as the “true” velocity field
is unknown. In the same conditions as with the synthetic images, it was possible to gen-
erate flow fields that are visually indistinguishable from those displayed in the original
paper. One of them is shown in figure 1 (right).

6 Speed-up

One interesting point in this reproductionwork is to evaluatewhat speed-up the progress
in hardware and possibly in compilers allowed for in the last 22 years on this task. We
evaluated the speed-up on the velocity estimation on real sequences of 4 496 × 496 im-
ages. The original paper reported 20 minutes, 210 minutes and 200 minutes for ODP2,
ODP4S and ODP4M respectively, running on a R4440 @ 250MHz, and using the SGI®
acc compiler. Similar execution times were obtained with a 200MHz Pentium with gcc,
indication a slightly higher throughput per MHz for the Intel processor. We ran the re-
production on a machine hosting two Intel® Xeon® CPU E5-2643 @ 3.30GHz, each with
4 cores and 8 threads. The original code in not parallel anyway. As we had access to
an Intel icc compiler, we tried it along with the default Gnu gcc one. Regarding the
Intel compiler, we evaluated both the default (with multiply-add) and the compatible
(without multiply-add) modes.

6.1 Original version
Table 3 shows the execution time in seconds and the relative speed-up compared to the
1998 version. It is striking that the speed-up is much higher than the ratio between the
processor clock frequency, even though the execution is strictly single-threaded. The
Intel compiler is significantly faster than the GNU one on this task while the Intel com-
piler with disabled multiply-add is in-between. Using the Intel compiler in its default
mode, the speed-up is over 100. Last but not least, the Intel processor-based server that
we used for the reproduction costed less than one third of the cost of the R4400-base
SGI server originally used. Regarding the 100+ times overall speed-up related to the
11-16 times increase in processor clock frequency, possible explanations include newly
available vectored instructions, aggressive compilation techniques and highly efficient
use of the processor caches.

6.2 Threaded version
The ODP-PIV method is now obsolete so it was not worth spending time in improving it.
Yet, I still tried to produce a multi-threaded version of the code with a minimal effort.

ReScience C – Quénot 2020 4

https://rescience.github.io/


Reproduction of ODP-PIV from the 1998 “Particle Image Velocimetry with Optical Flow” paper UNDER REVIEW

Exec. time (s) Speed-up
gcc icc− icc gcc icc− icc

ODP2 22.7 14.8 10.3 52 81 116
ODP4S 167.3 123.6 119.7 75 101 105
ODP4M 162.4 126.2 111.8 73 95 107

Table 3. Execution time and speed-up relative in the reproduction, original version. icc− is icc in
the compatible mode (with disabled multiply-add).

This involved inserting the following two lines (at different places):
#include <omp.h>
#pragma omp parallel for num_threads(16) private(dd,gg,bb,…)
The latter was applied to the main computing loop (there was one higher level loop). It
was also necessary to move three memory allocation and freeing calls inside the loop
so that threads get their private working buffers. A procedure which keeps track of the
amount of allocated memory also had to be made thread-safe, which basically involved
inserting four
#pragma omp atomic
declarations at appropriate places. Nothing else needed to be modified and the results
are shown in table 4. The additional speed-up was obtained only for the ODP4X variants,
which intrinsically contain more parallelism than the ODP2 one. The additional speed-
up was “only” slightly above a factor of 3, which is not that much considering the 8
available cores but quite reasonable considering the very low investment in software
engineering required. Multi-threading did not change at all the result; only the reported
maximum allocated memory in the output log (to stdout) is slightly increased due to
the need of having some private memory buffers for the threads.

Exec. time (s) Speed-up
gcc icc− icc gcc icc− icc

ODP2 25.8 12.5 10.7 46 96 112
ODP4S 50.7 35.3 33.2 248 356 379
ODP4M 50.0 34.5 31.4 240 347 382

Table 4. Execution time and speed-up relative in the reproduction, threaded version

7 Conclusion

I successfully reproduced the results obtained for the ODP-PIVmethod presented in our
1998 paper in Experiments in Fluids. Not much difficulty was encountered in the repro-
duction. This was greatly due to the fact that the C language was not discontinued since
then and that it was kept highly backward-compatible. This was also due to the fact that
the ODP-PIV was a standalone software without any dependency on any other tool or
library. That was 22 years ago though and I donʼt think that something significant can
nowadays be achieved using such a completely autonomous approach. That reproduc-
tion also gave a milestone regarding the progress in brute computing performance on
this task, indicating a 100+ speedup just thanks to progress in architecture and compil-
ers, a 360+ speed-up exploiting the new multi-threaded capabilities with an extremely
small engineering investment and finally a 1000+ factor in brute computing power per
euro. Overall, this reproduction, including additional experiments and the writing of
this paper, required about two full-time weeks.

ReScience C – Quénot 2020 5

https://rescience.github.io/


Reproduction of ODP-PIV from the 1998 “Particle Image Velocimetry with Optical Flow” paper UNDER REVIEW

References

1. G. Quénot, J. Pakleza, and T. Kowalewski. “Particle Image Velocimetry with Optical Flow.” In: Experiments in
Fluids 25.3 (1998), pp. 177–189.

2. G. M. Quénot. “The ’orthogonal algorithm’ for optical flow detection using dynamic programming.” In: [Proceed-
ings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 3.
1992, 249–252 vol.3.

3. G. Quénot. “Computation of Optical Flow Using Dynamic Programming.” In: Proceedings of IAPRWorkshop on
Machine Vision Applications, MVA 1996, November 12-14, 1996, Tokyo, Japan. 1996, pp. 249–252.

ReScience C – Quénot 2020 6

https://rescience.github.io/

	Introduction
	Particle Image Velocimetry (PIV)
	Orthogonal Dynamic Programming (ODP) for image matching and flow estimation
	Application to Particle Image Velocimetry (ODP-PIV)
	Reproduction of the results
	Quantitative results on synthetic images
	Visual results on synthetic images
	Results on real images

	Speed-up
	Original version
	Threaded version

	Conclusion

