Recognizing Emotions for Audio-Visual Document Indexing, Xuan-Hung Le, Geoges Quénot and Eric Castelli, 9th IEEE Symposium on Computers and Ccommunications (ISCC'04), Alexandria, Egypt June 28 - July 1, 2004.

In this paper, we proposed using MFCC coefficients and a simple but efficient classifying method: Vector Quantification (VQ) to perform speaker-dependent emotion recognition. Many other features: energy, pitch, zero crossing, phonetic rate, LPC? and their derivatives are also tested and combined with MFCC coefficients in order to find the best combination. Other models, GMM and HMM (Discrete and Continuous Hidden Markov Model), are studied as well in the hope that the use of continuous distribution and the temporal evolution of this set of features will improve the quality of emotion recognition. The accuracy recognizing five different emotions exceeds 80% by using only MFCC coefficients with VQ model. This is a simple but efficient approach, the result is even much better than those obtained with the same database in objective evaluation by human with the listening and judge without returning permission or comparison between sentences.