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Why logic in IR? Motivations

l Classical IR models seem to have reached their 
maximal potential

l Most classical IR models are parametric

l The nature of information is not well captured in 
classical IR models

l Classic IR models are not flexible enough for 
heterogeneous or structured information items

4

Why logic in IR? Objectives (1)

l Formally capture different aspects of information

– Document and query representation
– Matching process (notion of “relevance”)
– Thesaural and ontological  information 
– User knowledge 
– Contextual information
– Combination of information sources

– Heterogeneity and structure of information items
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Why logic in IR? Objectives (2)

l Represent information

– Knowledge representation (semantics, soundness, 
completeness, reasoning)

– Medium-independent (e.g., FERMI model)

l Theoretical study of IR
– Formal study of the properties of models and systems 

(meta-models)
– Study of the concept of “aboutness”

6

A logical framework

l Logic: L
l Document representation: d ∈ L

l Query representation: q ∈ L

l Estimation of “relevance”: ???

l We can attempt to represent other elements of the 
IR task in L: user knowledge, context, domain 
knowledge, etc.
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How do we estimate relevance?

l It all depends on the logic used and the semantic 
associated to “relevance” 

l Classical approach

– Relevance:  d → q
– Used for long time in Boolean systems

l Non-classical approach
– Relevance: Strength(d → q)
– Enables to evaluate partial relevance

8

Classical logic for IR

l Relevance as: validity of d → q
– Inference system: d | q (| d → q)

Find finite sequence of inference rules (e.g. Modus Ponens) 
that leads d to q

– Model system: d |= q (|= d → q)

q is a logical entailment of d if q is true in every model 
(interpretation) of d
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Example (model system)

l d |= q1 d |≠ q2 ok

l d |≠ q2 d |≠ q3 partial relevance

l d |= q4 d |= q5 degree of relevance

l d |= q1 d |= q5 specificity

t1 ∧ t2Document d ={t1, t2, t3}Propositions 

d → q5d → q4d → q3d → q2d → q1t3t2t1

11001011

q5 = t1 ∧ t2q4 = t1 ∨ t3q3 = t1 ∧ t3q2 = t3q1 = t1Queries:

10

Limitations of classical logic

l Classical logic cannot cope with:

– Partial relevance
– Degree of relevance
– Specificity and exhaustivity

l We need to be able to measure the “strength” of the 
implication: Strength (d → q)

– One way is to measure the uncertainty of the implication, 
i.e.  Pr(d → q), the probability of d → q

– So: IR is a process of uncertain inference
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IR as uncertain inference

l Why inference?
Inference principle : a document is estimated to be relevant 
to a query if it logical implies the query: d → q

l Why uncertain inference?
Uncertainty inference principle: both document and query 
representation do not fully capture the informative content of 
document and query, so there is a measure of uncertainty 
associated with the implication:
Relq(d1) > Relq (d2) if Pr(d1 → q) > Pr(d2 → q)

l How do we evaluate Pr(d → q)?
A large number of models have been proposed based on 
different perspectives and logics

12

Uncertain inference and IR

l Various researchers demonstrated that all models of 
IR can interpreted as uncertain inference

l They take the view that Pr(d → q) = Pr(q|d)

l They relate the probability of relevance Pr(R|q,d) to 
Pr(d → q) as: Pr(R|q,d) = f(Pr(d → q), Pr(d → q))

l Standard propositional logic and different 
interpretations of the semantic of probability 
(aleatory vs. epistemological view) can be used to 
define all classical models of IR

l Here we take a different view of Pr(d → q)
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The Logical Uncertainty Principle 

l Some models that consider IR as uncertain 
inference are based on the Logical Uncertainty 
Principle (LUP):

“Given two sentences x and y; a measure of the uncertainty of 
y→x relative to a given data set, is determined by the minimal 
extent to which we have to add information to the data set, to 
establish the truth of y →x”

Van Rijsbergen, 1986

14

Attempts of using LUP in IR

l LUP was one of first attempts to make an explicit 
connection between non-classical logic and 
uncertainty modelling in IR

l LUP does not say which logic and uncertainty theory 
one should use!

l LUP has stimulated a lot of research into the use of 
logic and uncertainty theory in IR and a number of 
models have been proposed
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Two different approaches

l Logical Models
Models capturing the uncertainty mainly in two ways: 
qualitatively by the logic itself (e.g., via default rules, non-
monotonicity, or background conditions), or quantitatively by 
adding an uncertainty theory to the logic (e.g.,fuzzy logic)

l Logical-Uncertainty Models
Models based on an uncertainty theory (e.g., probability 
theory, semantic theory, belief revision, imaging) that is 
defined on a logical basis

16

Logical models

l Many models have been proposed, based on, for 
example:

– Fuzzy logic
– Conceptual graph
– Situation theory and channel theory
– Default logic
– Abductive logic
– Description logic 
– Belief revision

l As an example I will present some models of IR  
based on probabilistic argumentation systems and 
modal logic
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Probabilistic argumentation sys.

l Classical example of logical models

– Probabilistic Argumentation System (PAS) = Propositional 
argumentation system + probability theory

– Clear division of tasks: the propositional argumentation 
system handles the qualitative aspects of the uncertainty, 
probability theory handles the quantitative aspects

l PAS enables to apply the LUP to IR

18

Propositional argumentation sys.

l Representing uncertain facts and rules

l Prop. AS = (P,A,S), where A is a set of arguments 
(or assumptions) and S is called knowledge base

P1 implies P2 under 
a12

a12 → (P1 → P2) ⇔

P1 ∧ a12 → P2

Uncertain simple rule

P1 is true under a1a1 → P1Uncertain fact

P1 implies P1P1 →P2Simple rule

P1 is trueP1Fact

Natural languageRepresentationKnowledge
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Add probability 

l Probabilistic AS (PAS) is a (P,A,S,X), where X is set 
of probabilities on A

– An hypothesis h is a logical formula in A∪P
– a is a minimal supporting argument for h if there is no a’

such that a is also a argument for h and a |= a’
– A quasi support for h is the disjunction of all minimal 

supporting arguments for h (some arguments might be in 
contradiction with S)

– A support for h excludes from the quasi support arguments 
that are in contradition with S

– PAS can be used to evaluate the degree of support for h
(basically the probability of the quasi support conditioned on 
the fact that S is satisfiable, i.e. non contradictory)  

20

Example

Consider a PAS with the following S

S1= D ∧ a1 → T1

S2= D ∧ a2 → T2

S3= T1 ∧ c1 → Q

S4= T3 ∧ c3 → Q

S5= T4 ∧ c4 → ¬Q

S6= T2 ∧ t23 → T3

S7= T1 ∧ t14 → T4

With: X = {P(a1)=0.7, P(a2)=0.8, P(c1)=0.7, P(c3)=0.7, P(c4)=0.6, 
P(t23)=0.6, P(t14)=0.4} 
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Graphical representation

D

Q

t4t3t2t1

a1

c4

t23

a2

t14

c1

c3
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PAS and IR

l Here is how Picard and Savoy use PAS in IR
– D is retrieved if D → Q

– We need to add (S8= D) to S (D is observed) and the 
evaluate the hypothesis Q, this can be done by finding all 
supporting and all refuting evidence for Q

– Finding arguments can be done resolution (as in 
propositional logic)

– Find the support for Q, excluding contradictory evidence
– Find probabilities associated to arguments (can be done in 

different ways)
– Evaluate the degree of support for Q, which is a measure of 

the strength of D → Q
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PAS and LUP

l It has been proved that

– The symbolic support for h, given S, is the minimal amount 
of information that must be added to S, sufficient to prove h

– The degree of support for h is a way to measure how 
different symbolic support compare to each other and can 
be used to compare, for example, D1 → Q vs D2 → Q

l Notice that the qualitative measure is independent of 
the probabilities given to the arguments

24

Strengths

l S enables to model different types of knowledge
– Thesaural, structural, inter-document relationships, context, 

etc.

l The qualitative aspect (based on propositional logic) 
is independent from the quantitative aspect

– Different approaches can be used to deal with the 
quantitative aspects (different way of evaluating the 
probabilities)

l PAS enable to model some important formal 
characteristics of IR models

– Information containment, intentionality, partiality and flow of 
information, “uncertainty in IR is everywhere”, etc.
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Limitations

l The major problem is the computation of the 
probabilities, to which the quantitative aspect of PAS 
is completely dependent

– Estimate “a priori” support to arguments
– Estimate probabilities of link arguments

l The tractability of the qualitative aspect might 
explode in large S

– It might not be feasible to use PAS for large collections or 
for complex contexts, document structures, etc.

26

Possible World Semantics

l Possible World Semantics (PWS)
– Proposed by Kripke in 1971
– According to PWS the truth value of a sentence is evaluated 

in the context of a world
– There are different worlds: possible worlds, actual worlds 

and non-actual worlds
– Note: ask a logician how to use PWS, not what it actually 

means ...

All possible worlds

Not possible according to T Possible according to T

Non-actual worlds Actual worlds
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PWS and modal logic

l PWS has been used in Modal Logic to give a 
semantic for “Necessity” (L) and “Possibility” (M)

l Basically, given a sentence A:
– LA is true, iff A is true in all possible worlds
– MA is true, iff A is true in some worlds

l A number of researchers have tried to apply Modal 
Logic in IR (see list of references)

l Modal Logic has also been used to implement the 
LUP 

– Now I will present the work of Nie

28

PWS and LUP

l Nie proposed to interpret x and y of LUP as d and q, 
so: Pr(d→q)

l Using PWS it is possible to move away from the 
classical interpretation of: Pr(d→q) = Pr(q |d)

l Using PWS we can implement LUP to evaluate 
Pr(d→q) in a particular data set K 

– The data sets could include everything: user knowledge, 
term space, external knowledge, etc.
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Evaluation of Pr(d →q) using PWS

l This can be done in 3 ways: modify any of the 
following until the implication d→q holds

– the data set (so a world is a data set)
– the document (so a world is a document)
– the query (so a world is a query)

l Measuring the extent of these modification enable to 
estimate relevance

l But modifications add uncertainty ...

30

Modification of the data set
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Modification of the document

d0

d1

dn

q

K

Given any two sets of 
information q and d, a 
measure of the uncertainty of 
d → q relative to a given 
knowledge is determined by 
the minimal extent to which we 
have to add information to d 
for it to become d’ to establish 
the truth of d’ → q.

32

Modification of the query
d0

q0

q1

qn

d

K

Given any two sets of 
information q and d, a 
measure of the uncertainty 
of d → q relative to a given 
knowledge is determined 
by the minimal reduction 
from q to q’, to establish 
the truth of d → q’.
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Example

l Here is an example of document modification:
– Starts with: 

d={sea,boat}, q={swimming}, 
K={sea related to swimming,...}

– Modify d to d’: 
d’={sea,boat,swimming}

– Now: d’ → q  holds, but we have to consider the uncertainty
associated to “sea related to swimming” and the 
modification carried out

l Problem:
– What if we started with d={sea,boat,fishing,storm}?

34

Generalisation of the LUP

l Nie proposed some extensions of these ideas:
– Not simply addition to K but transformation: addition, 

deletion and modification
– Transformation of documents and queries as well as the 

data set at the same time

l Generalised Logical Uncertainty Principle (1989)
K  R(d, q) = F [ Pr(K  d → q), Pr’(K q → d) ]

where: Pr and Pr ’ are functions of the implication strength 

F: co-ordination function between the two implications 
K: knowledge base or user knowledge (data set)

l This enables to evaluated the exhaustivity and 
specificity of the document to the query
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Exhaustivity and Specificity

l Consider:
d={sea,boat} , q1={sea}, q2={sea,boat,fishing,storm}

l Document d exhaustive to q1 (d → q1)
– Indicates how much of the query content is contained in the 

document content 
– (d → q ≡ d ⊇ q)

l Document d specific to q2 (q2 → d)
– Indicates how much of the document content is specific to 

the query content 
– (q → d ≡ q ⊇ d)

36

Strengths and limitations

l This model suffered from a few limitations:
– The model was implemented in simplistic terms without 

considering efficiency
– The model proved successful with small collections (as 

effective as current standard models), but experimentation 
with larger collections proved difficult

l But:
– This work started a line of research on how to use PWS in 

IR and how to model revision (additions, contractions, 
modifications) of q, d and data set

– Nie extended this work in subsequent papers to better 
implement and measure the modification of q, d, and K 
using counterfactuals
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Other logical models of IR

l Other logical models have tried to capture with 
different logics the modification of d and q

– Situation theory and channel theory
– Fuzzy logic

l Other logics capture better K and are able to 
measure in a better way the modification of K

– Description logic (e.g. MIRLOG)
– Belief revision

l Efficient implementation and experimentation of 
these models have always been the major problems

38

The Logical-Uncertainty approach

l Logical-Uncertainty Models of Information Retrieval

– Models based on an uncertainty theory (e.g., probability 
theory, semantic theory, belief revision, imaging) that is 
defined on a logical basis

l These models start from a different perspective

Logic Uncertainty
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Logical-Uncertainty models

l Many models have been proposed, based on:

– Probability theory
– Bayesian inference networks
– Semantic information theory 
– Probabilistic Datalog 
– Logical imaging
– Rough sets

– Probabilistic argumentation systems

l As an example I will present the models based on 
belief revision and logical imaging

40

Belief revision by logical imaging

l Logical imaging (LI) is a process developed in the 
framework of belief revision

l LI enables the evaluation of a conditional sentence 
without explicitly defining the operator “→”

l What is required is a clustering on the space of 
events (accessibility relation)

l PWS can be used to define the accessibility relation 
that LI requires
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PWS and LI

l LI states that:

“the truth value of a conditional y →x in a world w (actual) is 
equivalent to the truth value of the consequent x in the closest
possible world wy where the antecedent y is true”

l Interpretation:
– The passage from a world to another world can be 

interpreted as belief revision, and the passage from a world 
to its closest is equivalent to the least drastic revision of 
one’s belief

l Logical imaging is a powerful tool to implement the 
LUP

42

LI in IR

l Following Van Rijsbergen’s suggestion (1986) a 
number of approaches to the use of LI in IR have 
been proposed

l The main problem is the mapping of PWS and LI to 
the IR problem

– What is a world and what makes a world actual or possible?
– What is an accessibility relation?
– What is a “practical” and “feasible” implementation of LI?

l This is not trivial …
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What is a world in IR?

l Three different interpretations:

– A world is a document and accessibility is clustering in the 
document space

– A world is a state of knowledge, and accessibly is a metric 
in the space of states of knowledge 

– A world is a term and accessibility is clustering in the 
probabilistic term space

l Let us see this last interpretation, by Crestani

44

Duality view of the term space

l In IR a document collection is often represented by a 
occurrence matrix, where a document is represented 
using terms:

 t1  t2  t 3  …  tn  

d 1  1  0  1  …  0  

d 2  1  0  0  …  1  

d 3  0  1  1  …  1  

…  …  …  …  …  …  

d k  1  1  0  …  1  
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A world is a term

l By inverting the point of view, we can represent the 
semantic of a term using documents, so PWS tells 
us that a document (or query) is true in the context of 
a term if the term occurs in its interpretation

d1 d2 d3 … dn

t1 1 1 0 … 1

 t2 0 0 1 … 1

t3 1 0 1 … 0

… … … … … …

tk 0 1 1 … 1

46

The probabilistic term space T

l To be able to use logical imaging (LI) we need to 
associate a prior probabilityPr(t) to the term space, 
indicating the importance of the term t, before any 
query has actually been considered

l Assuming that ΣT Pr(t) = 1, the probability of a 
document d is equal to the sum of the probability of 
the terms in it: Pr(d) = Σt Prd∈d(t)
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Graphical representation of T

t3

t1
t2

t4

t5 t6

d q
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The LI process in T (1)

l We can estimate Pr(d→q) as: 

Pr(d→q) = Prd(q)

where: 

Prd(q) = Σt Prd(t)

Prd(t) is evaluated by revising the original probability 
distribution Pr over T (the set of possible words) by 
imaging on d
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The LI process in T (2)

l In other words:

Prd(tj) = Σt jPr(tj) I(tii,tjd)

with:

I(ti,tj
d)={1 if ti is true at tjd; 0 otherwise}

where tjd is the term most similar to ti appearing in 
the document d

50

LI in plain English

l The prior probability distribution Pr is modified so 
that all the index terms not occurring in the document 
transfer their probability to index term occurring in 
the document, according to their similarity values

l The probability is not destroyed, but only transferred: 
we have now a new probability distribution

l We obtain the minimal revision of the term space (in 
term of movement of probabilities) to make the 
antecedent true and evaluate the probability of the 
consequent in this new term space 

l More complex forms of LI have also been proposed: 
e.g. Generalised LI, Proportional LI, etc.
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LI and IR

l Important questions:

– How do we use LI in IR? 
– How can we use LI to implement the LUP?
– Can we implement it in a efficient and effective way?
– How does this model compare (analytically, to 

l Lots of work was devoted to these solve questions

52

Requirements for LI

l The evaluation of Pr(d→q) by LI requires:
1. a probability distribution over T
2. a similarity measure S so that for each index term we can 

determine the td
l We can use:

1. some term weighting function (e.g., idf, tf-idf)
2. some clustering function of the term space employing a 

similarity measure (e.g., EMIM), alternatively a thesaurus

l More complex forms of imaging require additional 
information
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An example of IR by LI (or RbLI)

l Here is a simple example:

– Suppose we have:

d = {t1, t5, t6} and q = {t1, t4, t6}

– Suppose also that we have a measure of similarity Sim over 
T = {t1,..t6} that tell us value s = Sim(ti, tj) for each pair of 
terms

– The above requirements on Sim can be relaxed to consider 
only the terms that are most similar

54

RbLI on the document d

t Pr(t) I(t,d) td Prd(t) I(t,q) Prd(t) I(t,q)

1 0.2 1 1 0.3 1 0.3

2 0.1 0 1 0 0 0

3 0.05 0 5 0 0 0

4 0.2 0 5 0 1 0

5 0.3 1 5 0.55 0 0

6 0.15 1 6 0.15 1 0.15

Sum 1.0 1.0 0.45

Here is the evaluation of Pr(d→q) by imaging on d:
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Interpretation of RbLI on d

t3

t1 t2
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t5 t6

d

Pr(t)

t1

t5 t6

d q
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RbLI on the query q

l Li on q can be done in a almost identical way:

t3

t1 t2
t4

t5 t6

t1
t4

t6

d q

t3

t1 t2

t4
t5 t6

Pr(t) Pr(t)

Prq(t)

q q
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General imaging and RbGLI

l General imaging is an extension of logical imaging 
proposed by Gardenfors in 1988

– It enables a better redistribution of probability by imaging 
based on a “opinionated distribution function”, causing a 
less drastic movement of probabilities

– It has been applied to IR in a similar way to RbLI

t3

t1
t2

t4

t5 t6

d

Pr(t)
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Strengths and limitations

l LI has proved useful for studying the kinematics of 
probabilities in IR. Comparing:

– models based on retrieval by joint probability:
l RbJP: Pr(R |q, d) = Pr(d,q)

– models based on retrieval by conditional probability: 
l RbCP: Pr(R |q, d) = Pr(q | d)

– models based on imaging: 
l RbLI: Pr(R |q, d) = Pr(d→q) by imaging

– models based on general imaging: 
l RbGLI: Pr(R |q, d) = Pr(d→q) by general imaging

l Like looking at IR models as “through a microscope”

l Insights on how to build better IR models were 
obtained, but experimental results were inconclusive
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l Here we have no time to talk about other models, but 
there are many others

l There is a continuum of models in this class:

l The more we move towards uncertainty theory, the 
simplest it become to implement the models, but we 
loose in representation power

Other logical-uncertainty models

Logic Uncertainty

Modal logic
Inference netsProb. Datalog

Logical
Imaging

PAS

60

Meta-Models of IR

l A completely different class of logical models is: 
Meta-Models of Information Retrieval

– Models aiming at formally studying the properties and the 
characteristics of IR systems within a uniform framework

l A few meta models have been proposed:
– “Aboutness” 
– Formal mathematical studies 
– Flow of information and channel theory 
– Probabilistic inference

l Here I will present  a meta-model for “Aboutness” by 
Huibers and Bruza
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Advantages of Meta-Models

l Logic-based approach provides a framework for 
studying IR in a neutral setting and theoretical 
investigations can take place independently from any 
given retrieval model

l “Aboutness” is one such area of investigation:
– IR determines whether one information object (e.g. 

document) is about another (e.g. query)
– What properties does this aboutness relation have within 

and across IR models?
– What properties of aboutness are beneficial/detrimental to 

retrieval effectiveness?

l Several logics for meta-theoretical investigations 
have been proposed

62

Aboutness

l A |= B denotes that A is about B

l A ⇒ B denotes that information B carries is also 
carried by A  (e.g. salmon ⇒ fish)

l A ⊗ B denotes the combination of the information 
carried by A and B (e.g. information ⊗ retrieval)

l A ⊥ B denotes that information carried by A and B is 
incompatible (e.g. sleeping ⊥ working)
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Some properties of aboutness 

A |= A reflexivity (under debate)

A |= B and B |= C transitivity (precision degrading)

A |= C

A |= B symmetry (overlap measure)

B |= A

A |= B and B ⇒ C right weakening (degrading?)

A |= C

64

Monotonicity

l Classical logic: A |= B

A ∧ C |= B

l Aboutness is non-monotonic:

surfing |= wave

surfing ⊗ internet |= wave 

l Monotonicitydegrades precision

l Vector space model is monotonic
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Different notions of monotonicity

l Clearly monotonicity has to be constrained

l Several have been proposed for this purpose 
(adapted from non-monotonic reasoning)

A |= B  A |= C cautious monotonicity

A ⊗ B |= C

A |= B    ¬ (A ⊥ C) rational monotonicity
A ⊗ C |= B

66

Limitations

l Cautious monotonicity is very conservative, and is 
probably not useful in practical setting

l Rational monotonicity states that C can only be 
composed with A if it is not incompatible with it

l But these notions of monotonicity can be used for 
“sound” query expansion
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Non-aboutness

l It is sometimes useful to know when an item is not a 
bout another

A |≠ B negation rational (desirable)

A |≠ B ⊕ C

A |= B asymmetry (not desirable)

B |≠ A

A ⊥ B preclusion (debatable)

A |≠ B and B |≠ A

68

Practical use of meta-models

IR model 1 IR model 2

logic-based
meta-model

aboutness properties
model 1

aboutness properties
model 2
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Conclusions on meta-models

l Provide a better understanding of aboutness

l Choice of framework can determine aboutness
properties

l Theoretical comparison of IR models is beginning, 
but more work is needed

– Exploitation of the results
– Analysing aboutness in probabilistic systems
– Relationship between aboutness properties and retrieval 

performance (soundness vs precision, completeness vs
recall)

70

Current work on logical models

l Complexity reduction for implementation

l Applications to
– Cross-language IR and query expansion

– Structured document retrieval 
– Multimedia IR 
– Context IR

l Semantics for the Web
– Ontologies + logical IR models
– Semantic Web
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Future work (1)

l Use logical models to capture the semantics of data 
for retrieval purpose

– Better representation models for complex objects (e.g. 
structured documents, multimedia documents)

– Better implementation of these models (e.g. open to 
external knowledge)

– Better validation of these models (in terms of effectiveness, 
efficiency and usability)

72

Future work (2)

l Integrationof logic and uncertainty models with
– Artificial intelligence methods (e.g. inference engine)
– Databases methods (e.g. data access optimisation)
– Computational linguistics methods (e.g. information 

extraction)

l Work on effectiveness of implementation for access 
to large data repositories

– Web
– Digital libraries
– Distributed systems
– Heterogeneous data (XML, image, video, etc)
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Final conclusions

While it can be argued that logical models of IR 
have still to prove that they can provide efficient 
and effective access to information, it is without 
doubts that they provide a very valuable 
contribution to the study of IR in directions that 
are complimentary to classical IR research

74
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