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Authority and relevance of Web pages

• the quality of conventional IR system document

collection is homogeneous

• the Web is uncontrolled and quality is highly

heterogeneous

• one aspect of quality is authority

• relevance is then crossed with authority

• however information about authority is not available

• directories and categories might be a means
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The role of links to measure authority

• links might supply information about page authority

• if the author of page A thinks that page B is important,

relevant or more generally related, he is likely to insert a

link from A to B

• two assumptions

– a link is likely to express authority of the target page

– the more the links, the greater the authority
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Note 3-1

The role of links to measure authority

• the use of links to measure authority implies that the latter is
conferred to a page by another page

• this is not necessary

• one might infer authority on the basis of “stand-alone” proper-
ties, e.g. typographical features or layout

• for example, the electronic version of a journal paper would be
more authoritative than a “casual” HTML page
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Care when using links to measure authority

• it is uncertain that a link is likely to express the authority
of the target page

– a link might not point to an authority

– a link might point to a non-authority

– a page might be pointed-to w.r.t. one or more subjects

• the number of in-links might not be a measure of
authority

– a popular page is directly pointed to by many links

– authoritative pages might be less pointed-to

• link analysis based methods might let authorities emerge

because deal with large numbers
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Note 4-1

Care when using links to measure authority

• automatically generated links rarely point to authoritative pages

• if they did, there would exist an automatic method to detect
authorities

• advertisement links are very often pointing to non-authorities

• the methods being illustrated in this lecture are unable to let
young authorities emerge – they are little pointed-to by other
pages
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Two link analysis approaches for Web page
ranking

• Markov chains

– model navigation

– authorities link to authorities

– rank by the probability that the page is reached

– applied at indexing time

• mutual reinforcement relationship

– model authoring

– hubs link to authorities

– rank by the degree to which the page is pointed-to by

hubs that point to other authorities

– applied at retrieval time
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Related work

• bibliometrics and the measures of impact factors of

scientific “units” (journals, papers, etc.)

• social networks and the measures of standing and social

influence

• hypertext information retrieval

• hypertext structure analysis
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Markov chains

• a set of states and a set of transitions between states

• pij is the transition probability that state j is reached

from i

• depicted as a weighted and directed graph, where nodes

are states and edge weights are probabilities of transition
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Note 7-1

Markov chains

• a Markov chain is defined as follows

• S is a discrete and finite state space {1, 2, . . . ,m} (but see below)

• the initial probability of state i is pi, such that
∑

i pi = 1

• each page has at least one out-link, i.e. there are not “sink”
states

• the probability of transition from i to j is pij, given i

• {pi1, . . . pim} is a probability distribution

pij ≥ 0
∑

j

pij = 1

• the probability of the sequence of states i0, i1, i2, . . . , in−1, in is
defined by pi0pi0i1pi1i2 · · · pin−1in



Note 7-2

Markov chains

• we are considering time homogeneous or invariant Markov chains,
which are a special case of Markov chains

• the transition probabilities of the more general case are defined
as

pij(t) = Pr(j is reached at time t | i is reached at time t− 1)

• the invariant Markov chains have the property that their transi-
tion probabilities are independent of time t

• Markov chains are a special case of stochastic processes whose
transition probabilities depend on states that are reached before
the previous one

Note 7-3

Stochastic processes

• S is the discrete state space and T is the discrete parameter
space (in general, S or T might be continuous)

• Xt is a random variable depending on t ∈ T and taking values in
S

• (t0, t1, ..., tn, t) is finite or countably infinite and ti < ti+1, tn < t

• the stochastic process {Xt, t ∈ T} has probability function

Pr(Xt = x | Xtn
= xn, Xtn−1 = xn−1, . . . , Xt0 = x0)

• with Markov chains

pxn,x(t) = Pr(Xt = x | Xtn = xn)

• with invariant Markov chains

pxn,x = Pr(Xt = x | Xtn = xn) = Pr(Xt1 = x | Xt0 = xn)



ESSIR 2003 Web retrieval 3 Sept. 2003

n-step transition probability
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two-step transition

p
(2)
11 = p11p11 + p12p21 + p13p31

= 0 + 0.5 · 0 + 0.5 · 1
= 1

2

p
(3)
32 = p

(2)
31 p12 + p

(2)
32 p22 + p

(2)
33 p32

= 0 · 1
2 + 0.5 · 0 + 0.5 · 0

= 0
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n-step transition probability

• by definition

p
(1)
ij = pij

is the one-step transition probability from i to j

• the two-step transition probability is

p
(2)
ij = pi1p1j + pi2p2j + . . . + pimpmj =

∑
k

pikpkj

• in general,

p
(n)
ij =

∑
k

p
(n−1)
ik pkj n = 1, 2, . . .

is the n-step transition probability, where p
(0)
ik = 1 if i = k,

0 otherwise
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Note 9-1

Chapman-Kolmogorov equation

• for time homogeneous, discrete and finite Markov chains

• for any r such that 0 < r < n,

p
(n)
ij =

∑
k∈S

p
(r)
ik p

(r,n)
kj (1)
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State probability
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n-step state probability

• initial probability distribution

p
(0)
i i = 1, 2, . . . m

• the probability of state i after one step is

p
(1)
i = p

(0)
1 p1i + p

(0)
2 p2i + . . . + p(0)

m pmi =
∑

k

p
(0)
k pki

• in general, the probability of state i at step n is

p
(n)
i =

∑
k

p
(n−1)
k pki
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Matrix representation

P =


0 0.5 0.5

0 0 1

1 0 0

 p(0) =


0.33

0.33

0.33


one-step transition initial state

probability matrix probability vector
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Note 12-1

Matrix representation

P =

 p11 . . . p1m

...
...

pm1 . . . pmm

 p =

 p1

...
pm



p(n) = P′p(n−1) =


∑

i pi1p
(n−1)
i

...∑
i pimp

(n−1)
i


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Matrix representation of n-step transition
probability


0.5 0 0.5

1 0 0

0 0.5 0.5

 =


0 0.5 0.5

0 0 1

1 0 0




0 0.5 0.5

0 0 1

1 0 0


P2 = P P

0.406 0.188 0.406

0.438 0.187 0.375

0.375 0.219 0.406

 =


0 0.5 0.5

0 0 1

1 0 0

 · · ·


0 0.5 0.5

0 0 1

1 0 0


P10 = P · · · P︸ ︷︷ ︸

10 times
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Note 13-1

Matrix representation of n-step transition probability

Pn = P · · ·P︸ ︷︷ ︸
n times

=


p
(n)
11 . . . p

(n)
1m

...
...

p
(n)
m1 . . . p

(n)
mm


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Matrix representation of n-step state
probability


0.333

0.167

0.500

 =


0 0 1

0.5 0 0

0.5 1 0




0.333

0.333

0.333


p(1) = P′ p(0)


0.417

0.166

0.417

 =


0 0 1

0.5 0 0

0.5 1 0




0.333

0.250

0.417


p(4) = P′ p(3)
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Transition probability and state probability at
step n


0.417

0.166

0.417

 =


0 0 1

0.5 0 0

0.5 1 0




0.333

0.250

0.417


p(4) = P′ p(3)

=


0.25 0.50 0.50

0.25 0 0.25

0.50 0.50 0.25




0.333

0.333

0.333


= P4′ p(0)
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Note 15-1

Transition probability and state probability at step n

• n-step state probability

p(n) = P′p(n−1)

• relationship with n-step transition probability

p(n) = P′p(n−1)

= P′(P′p(n−2))
= P′(P′ . . . (P′p(0)))
= Pn′p(0)



Note 15-2

Stationarity

p(n) = P′ p(n−1) 0.4
0.2
0.4

 =

 0 0 1
0.5 0 0
0.5 1 0

  0.4
0.2
0.4



1
0.4

2
0.20.5

3
0.4

0.5

1

1

chain at step 0

1
0.4

2
0.20.5

3
0.4

0.5

1

1

chain at step n > 0 – note that the
state probability is stationary

Note 15-3

Stationarity and matrices

• p is stationary if

p
(n)
j = p

(n−1)
j n = 1, 2, . . . j = 1, 2, . . .

• matrix form
p = P′p

where
p = p(n) n = 1, 2, . . .
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An irreducible chain

1
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4
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6

• let us consider the “solid” sub-graph

with states {1, 2, 3}

• each state can be reached from any

other state after n ≥ 0 steps

• then every pair of states communi-

cate between them within one chain

• the sub-chain is closed because out-

side states cannot be reached

• {1, 2, 3} is irreducible because there

are not closed subchains of it
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A non-irreducible chain

1
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1

1
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0.5

5
0.5

1

• some states cannot be reached

from some states

• there are states that do not

communicate between them

within the chain

• the chain is not irreducible be-

cause contains two closed sub-

chains

• which are irreducible
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Note 17-1

Irreducibility

• state j is accessible from state i if j can be reached from i in a
finite number of steps

• a chain is closed if no state outside is accessible from any state
inside it

• states i and j are said to communicate if they are accessible to
each other

• communication is an equivalence relationship and S can be parti-
tioned into equivalence classes such that states belonging to dif-
ferent equivalence classes do not communicate with each other

• if there is one equivalence class, the chain is irreducible
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Persistency and transiency

1

2

0.5

3

0.5

1

1

4

0.5
5 0.5

0.5

0.5

• 4, 5 are transient – eventual re-

turn is uncertain

• 1, 2, 3 are persistent – eventual

return is certain
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Note 18-1

Persistency and transiency

• a state i is persistent if and only if, starting from state i, eventual
return of the chain to i is certain

• otherwise i is transient

• if a state i is an element of a equivalence class and i is persis-
tent (transient), then all the other states of the same class are
persistent (transient)
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A periodic chain

1

2

1 31

1

4

0.5
5

0.5

0.5

0.5

• 1, 2, 3 are periodic
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Note 19-1

Periodicity

• another example is given by

P =

 0 0.5 0.5
1 0 0
1 0 0


• p

(n)
ii = 0 if n is odd and p

(n)
ii > 0 if n is even, then state i is periodic

and period is two

• state i has period is three if p
(n)
ii > 0 if n = 3k, 0 otherwise

• in general, the period of state i is the greatest common divisor
of all integers n ≥ 1 for which p

(n)
ii > 0

• if every state of a class has period one, then all the states are
aperiodic and the class is aperiodic

• if pij > 0, i, j = 1, 2, . . . ,m then the chain is irreducible, persisten
and aperiodic
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Limit probabilities of an irreducible, a-periodic
and persistent chain

P =


0 0.5 0.5

0 0 1

1 0 0

 P30 =


0.4 0.2 0.4

0.4 0.2 0.4

0.4 0.2 0.4




0.4

0.2

0.4

 =


0.4 0.4 0.4

0.2 0.2 0.2

0.4 0.4 0.4




p
(0)
1

p
(0)
2

p
(0)
3


p(30) = (P30)′ p(0)

Massimo Melucci U. of Padova, Italy 20



ESSIR 2003 Web retrieval 3 Sept. 2003

Limit probabilities of two closed sub-chains

P =



0 0.5 0.5 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0.5 0.5

0 0 0 1 0



n 0 30 0 30

p
(n)
1 0.3 0.36 0.07 0.08

p
(n)
2 0.3 0.18 0.07 0.04

p
(n)
3 0.3 0.36 0.06 0.08

p
(n)
4 0.05 0.07 0.4 0.53

p
(n)
5 0.05 0.03 0.4 0.27
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Limit probabilities of transient and persistent
chains

P =


0 0.5 0.5 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0.5 0.5

0 0.5 0 0.5 0.5

 P30 =


0.4 0.2 0.4 0 0

0.4 0.2 0.4 0 0

0.4 0.2 0.4 0 0

0.4 0.2 0.4 0 0

0.4 0.2 0.4 0 0




0.4

0.2

0.4

0

0

 =


0.4 0.4 0.4 0.4 0.4

0.2 0.2 0.2 0.2 0.2

0.4 0.4 0.4 0.4 0.4

0 0 0 0 0

0 0 0 0 0




p
(0)
1

p
(0)
2

p
(0)
3

p
(0)
4

p
(0)
5


p(30) = (P30)′ p(0)
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Limit probabilities of a periodic chain

P =



0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0.5 0.5

0 0.5 0 0.5 0



n 0 10 20 30 40 . . .

p
(n)
1 0.20 0.29 0.38 0.32 0.30

p
(n)
2 0.20 0.31 0.30 0.38 0.32

p
(n)
3 0.20 0.37 0.32 0.30 0.38

p
(n)
4 0.20 0.02 0.00 0.00 0.00

p
(n)
5 0.20 0.01 0.00 0.00 0.00
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Note 23-1

Limit transition probabilities of an irreducible chain

P1 1 2 3

1 0 0.50 0.50
2 0 0 1.00
3 1.00 0 0

P5 1 2 3

1 0.50 0.12 0.38
2 0.50 0.25 0.25
3 0.25 0.25 0.50

P10 1 2 3

1 0.41 0.19 0.41
2 0.44 0.19 0.37
3 0.37 0.22 0.41

P30 1 2 3

1 0.40 0.20 0.40
2 0.40 0.20 0.40
3 0.40 0.20 0.40



Note 23-2

Limit transition probabilities of an irreducible chain

1

2
0.5

3
0.5

1

1 1

0.406
2

0.203

3
0.391

0.375

0.219

0.406

0.406

0.188
0.406

step 1 step 10

1

0.400
2

0.200

3
0.400

0.400

0.200

0.399

0.399

0.200
0.400

1

0.400
2

0.200

3
0.400

0.400

0.200

0.400

0.400

0.200
0.400

step 20 step 30

Note 23-3

Limit transition probabilities of an non-irreducible chain

P1 1 2 3 4 5

1 0 0.50 0.50 0 0
2 0 0 1.00 0 0
3 1.00 0 0 0 0
4 0 0 0 0.50 0.50
5 0 0 0 1 0

P5 1 2 3 4 5

1 0.37 0.25 0.38 0 0
2 0.25 0.25 0.50 0 0
3 0.50 0.12 0.38 0 0
4 0 0 0 0.67 0.33
5 0 0 0 0.66 0.34

P10 1 2 3 4 5

1 0.41 0.20 0.39 0 0
2 0.37 0.22 0.41 0 0
3 0.40 0.19 0.41 0 0
4 0 0 0 0.67 0.33
5 0 0 0 0.67 0.33

P30 1 2 3 4 5

1 0.40 0.20 0.40 0 0
2 0.40 0.20 0.40 0 0
3 0.40 0.20 0.40 0 0
4 0 0 0 0.67 0.33
5 0 0 0 0.67 0.33



Note 23-4

Limit transition probabilities of another non-irreducible
chain

P1 1 2 3 4 5

1 0 0.50 0.50 0 0
2 0 0 1.00 0 0
3 1.00 0 0 0 0
4 0 0 0 0.50 0.50
5 0 0.50 0 0.50 0.50

P5 1 2 3 4 5

1 0.37 0.25 0.38 0 0
2 0.25 0.25 0.50 0 0
3 0.50 0.12 0.38 0 0
4 0.25 0.14 0.28 0.20 0.13
5 0.31 0.23 0.25 0.13 0.08

P10 1 2 3 4 5

1 0.41 0.20 0.39 0 0
2 0.38 0.22 0.39 0 0
3 0.41 0.19 0.40 0 0
4 0.39 0.19 0.37 0.07 0.04
5 0.39 0.19 0.36 0.04 0.03

P30 1 2 3 4 5

1 0.40 0.20 0.40 0 0
2 0.40 0.20 0.40 0 0
3 0.40 0.20 0.40 0 0
4 0.40 0.20 0.40 0 0
5 0.40 0.20 0.40 0 0

Note 23-5

Limit transition probabilities of a periodic chain

P1 1 2 3 4 5

1 0 1.00 0 0 0
2 0 0 1.00 0 0
3 1.00 0 0 0 0
4 0 0 0 0.50 0.50
5 0 0.50 0 0.50 0

P5 1 2 3 4 5

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0.13 0.20 0.34 0.20 0.13
5 0.56 0.17 0.06 0.13 0.08

P10 1 2 3 4 5

1 0 0 1 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 0.24 0.42 0.22 0.07 0.04
5 0.20 0.11 0.62 0.04 0.03

P30 1 2 3 4 5

1 0 1 0 0 0
2 0 0 1 0 0
3 1 0 0 0 0
4 0.45 0.26 0.29 0 0
5 0.13 0.65 0.23 0 0



Note 23-6

Limit transition probabilities

• if a chain is irreducible, persistent (all states are persistent) and
aperiodic

lim
n→∞

p
(n)
ij = pj j = 1, 2, . . .

where {pj} is stationary and pj > 0 for every j

• if not persistent, pj ≥ 0

• matrix form

lim
n→∞

Pn =

 p1 . . . pm

...
...

p1 . . . pm

 =

 p
...
p

 = p

Note 23-7

Limit state probabilities

• since
p
(n)
j =

∑
i→j

p
(n−1)
j pij =

∑
i→j

p
(0)
j p

(n)
ij

then
pj = limn→∞ p

(n)
j

= limn→∞
∑

i→j p
(0)
j p

(n)
ij

=
∑

i→j p
(0)
j limn→∞ p

(n)
ij
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Intuitive view of PageRank

• the Web “is a” Markov chain

• the PageRank of page j is the probability that the user

reaches j through i → j given that he reached i

• all the links from i to j are counted once

• the PageRank of page j depends on those of the pages

linking to it

• the more j is linked by pages with high PageRank, the

higher its PageRank

• the formulation is recursive thus requiring an initial

probability

• proposed by Brin and Page (1998)
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PageRank and Markov chains

• the set of Web pages is the set of states

• initial probability

p
(0)
j

that the user is at page j at the beginning of navigation

• after n steps

p
(n)
j =

∑
i→j

p
(n−1)
j pij where pij =

1
oi

• the PageRank of j is

lim
n→∞

p
(n)
j
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Note 25-1

PageRank and Markov chains

• S is the set of Web pages, and is finite yet very large

• the initial probability does not depend on the time at which the
user starts navigation

• also the transition probabilities do not

• PageRank is then modeled by time homogeneous (invariant)
chains

• the arrival at state j depends on the last step only and the
states at which the user has arrived before are ignored - this is
the Markov property

• transition probability is independent of visit time

• chains are time discrete and state discrete
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Requirements for PageRank formulation

• the chain must be a Markov chain, then pij ≥ 0 and∑
j pij = 1, therefore oi > 0 for all i

• the chain must be a-periodic otherwise PageRank does

not converge

• the chain must be persistent and irreducible, otherwise:

– there are more than one irreducible and persistent
disjoint subchains
∗ the PageRank depends on the initial probability

– there are transient pages and persistent pages
∗ transient pages have null PageRank and are indistiguishable,

while persistent pages absorb all the PageRank distribution
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Note 26-1

Decomposition of a chain

• the states of a Markov chain can be divided, in a unique manner,
into disjoint sets T,C1, C2, . . . such that

• T consists of all transient states

• if i ∈ Ck then every j ∈ Ck can be reached from i, whereas every
j ∈ Ch, h 6= k cannot be reached from i

• this implies that Ck is irreducible and contains only persistent
states
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Converging to PageRank
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0.2

0.2

0.5

0.2

• a page can be reached through actual links

(solid edge) with probability 1 − d or other

ways (dashed edge) with probability d

• other ways are URL typing, search engines,

bookmarks, etc.

• a solid edge is weighted by the probability

pij that i → j is followed

• a dashed edge is weighted by the probability

qij that j is reached from i in another way

• if there were i such that oi = 0, then d = 1
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Note 28-1

Converging to PageRank

• from the original formulation, PageRank of page i is the limit
probability that a random surfer is at i when navigating

• if links are the only means the surfer easily get into a loop (pe-
riodicity) or leaves pages for ever (transiency)

• to extend it, note that surfers exploit alternative ways of access
- search engines, “back” button, URL typing box - thus every
page is potentially accessible

• if surfers fall into a “sink” page, then damping to another page
is mandatory – this is why d = 1 for that page
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Converging to PageRank (cont.)

1 2 3 4 5

1 0 0.5 0.5 0 0

2 0 0 1 0 0

3 1 0 0 0 0

4 0 0 0 0.5 0.5

5 0 0 0 1 0

1 2 3 4 5

1 0.2 0.2 0.2 0.2 0.2

2 0.2 0.2 0.2 0.2 0.2

3 0.2 0.2 0.2 0.2 0.2

4 0.2 0.2 0.2 0.2 0.2

5 0.2 0.2 0.2 0.2 0.2

P Q = (qij), qij = 1
m

T = (1−d)P+dQ =

1 2 3 4 5

1 0.03 0.45 0.45 0.03 0.03

2 0.03 0.03 0.88 0.03 0.03

3 0.88 0.03 0.03 0.03 0.03

4 0.03 0.03 0.03 0.45 0.45

5 0.03 0.03 0.03 0.88 0.03

provided d = 0.15
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Converging to PageRank (cont.)
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1

0.03
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3
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4

0.45
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0.03
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0.03

0.03
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0.03
0.03
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0.03 0.03
0.45
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Note 31-1

Converging to PageRank

• let d be the probability that the surfer gets page j through alter-
native ways of access independently of starting page (damping
factor)

• 1−d is the probability that the surfer gets page j through in-links

• the transition probability is

tij =
{

(1− d) pij + d qj if oi > 0
qj if oi = 0

• state probability is defined as before

p
(n)
j =

∑
i→j

p
(n−1)
i tij n = 1, 2, . . .

• this redefinition leads to a irreducible, persistent and aperiodic
Markov chain – PageRank exists and is unique

• for nodes without out-links, d must be 1
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Converging to PageRank (cont.)


0.23

0.13

0.24

0.26

0.14

 =


0.23 0.23 0.23 0.23 0.23

0.13 0.13 0.13 0.13 0.13

0.24 0.24 0.24 0.24 0.24

0.26 0.26 0.26 0.26 0.26

0.14 0.14 0.14 0.14 0.14




p
(0)
1

p
(0)
2

p
(0)
3

p
(0)
4

p
(0)
5


p = (limn→∞Tn)′ p(0)
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Note 32-1

Converging to PageRank

• let

qj =
1
m

and
∑

j

pij = 1

then∑
j∈S

qj = 1
∑
j∈S

tij = 1 i = 1, 2, . . . ,m

• moreover tij > 0, i, j = 1, 2, . . . ,m

• then the chain is irreducible, persistent and aperiodic, and a
unique PageRank exists

• note that this reformulation is sufficient yet not necessary to
make PageRank unique
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Some extensions on PageRank

1. page-sensitive damping factor: damping factor is no

longer uniform but changes according to the linked pages

2. topic-sensitive PageRank: damping factor is no longer

uniform but changes according to the query topic

3. transition probabilities might be estimated in different

ways
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Page-sensitive damping factor

• a more general formulation of the transition probability

of the PageRank chain would be

tij = (1− di) pij + di qj

where the damping factor depends on page i

• the rationale is that damping is, for example, more likely

if the current page is little useful
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Note 34-1

Page-sensitive damping factor

• note that {tij} is still a transition probability of a irreducible,
persistent and aperiodic chain

tij ≥ 0∑
j tij = (1− di)

∑
j pij + di

∑
j qj

= 1− di + di

= 1

provided that
∑

j pij = 1

• an example is given by “sink pages” for which di = 1
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Topic-sensitive PageRank

• PageRank is computed once for each given Web graph

• it is independent of the query topic

• to make PageRank topic-sensitive, a set of predefined

topics is selected

• for each topic a set of relevant pages is compiled

• PageRank is computed for each topic

• for each query the most probable topic is selected

• pages are ranked by the PageRank from the selected

topic and the probability that the topic describes the

query
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Topic-sensitive PageRank

2 5

4

3

1

6
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Note 36-1

Topic-sensitive PageRank

• let us consider the 6-state Markov chain (tij is omitted for sake
of simplicity)

• damping can occur to relevant pages only

• qj = 1
2 because there are 2 relevant pages

• to rank relevant pages, the subchain must be irreducible

• to make it irreducible, add all the pages, i.e. {3, 4} being pointed-
to by each relevant page

• {2, 3, 4, 5} is the unique irreducible, persistent and a-periodic sub-
chain – PageRank is unique

• {1, 6} are transient – PageRank is null



Note 36-2

Topic-sensitive PageRank

• let I be a subset of r relevant pages and

qj =
1
r

if j ∈ I, qj = 0 otherwise

• C is the set of states that can be reached from I

• C is an irreducible, persistent and aperiodic class

• C is unique, PageRank exists positive and is unique for C whereas
the pages outside I have null PageRank

• see Page et al. (1998), Haveliwala (2002), Pretto (2002)
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Alternative transition probability estimators

• if multiple links i → j are distinctly considered

pij =
lij
li

where lij is the number of distinct links i → j out of the

li =
∑

j lij total out-links from i

• using automatic hypertext generation methods

pij =
cos(vi,vj)∑
j cos(vi,vj)

means that pij is function of the cosine of the angle

between the keyword vector representing i and the

keyword vector representing j
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Note 37-1

Alternative transition probability estimators

• the first estimator is based on the assumption that the distinct
links are equivalently considered

• yet there might be some links being more likely to be followed,
e.g. the one whose anchor is a bold text

• the second estimator might be replaced by the more “natural”

pij = f(Pr(relevance | i, j))

that means that pij is function of the probability that j is relevant
to the information need represented by i

• note that transition probabilities are topic sensitive and must
be either computed at retrieval time or pre-computed for pre-
defined topics
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A couple of remarks on PageRank

1. in the seminal paper the PageRank formulation is slighly

different

2. given a graph, page ranking depends on the damping

factor
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Note 38-1

The original PageRank

• in their seminal paper, Brin and Page wrote

p′j = (1− c) + c
∑
i→j

p′ipij

• note that∑
j

p′j =
∑

j

[(1− c) + c
∑
i→j

p′ipij ] = m(1− c) + c
∑

j

∑
i→j

p′ipij = m

• the question is whether this imprecision makes p′ different from
p

• one can show that
p′ = mp

thus the PageRank values change but ranking does not

Note 38-2

Dependency of ranking on the damping factor

• PageRank aims at ranking pages using links only

• the damping factor should be a parameter to make PageRank
unique

• unfortunately, not only the PageRank values depend on the
damping factor, but also page ranking does

• for example, the chain with transition probability matrix
0.2 0.2 0.2 0.2 0.2
1 0 0 0 0
1 0 0 0 0
0 0 0 0.5 0.5
0 0 0 0.5 0.5


ranks pages with d = 0.49 differently if d = 0.51

• see Pretto (2002)
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Mutual reinforcement relationship

2

1

3

4

5

1

23

4

6

5

7

popular page authority and hubs
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Note 39-1

Mutual reinforcement relationship

• a popular page is directly pointed-to by many pages that do not
frequently point to other pages

• an authoritative page is pointed-to by many pages, called “hub”
that do frequently point to other (authoritative) pages

• authorities are pointed to by many hubs and hubs points to many
authorities

• the more the page is pointed to by hubs, the more the page is
authority

• the more the page point authorities, the more the page is hub
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Computation of authority and page scores

1

4

5

6

7

2

3

a4 = h1 + h2 + h3

h4 = a5 + a6 + a7
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An example of computation of authority and
page scores

1 2

3

4

5

6

7

• after 10 steps, we have:

i 1 2 3 4 5 6 7

ai 0 0.01 0.01 0.01 0.62 0.79 0

hi 0.02 0.66 0.66 0.37 0 0 0

• note that 1 is a poor hub yet there are 3 out-links and

• that 7 is a poor authority yet there are 2 in-links
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Note 41-1

A formalization of the mutual reinforcement relationship

• each page i is assigned an authority score ai and a hub score hi

• mutual reinforcement relationship

ai =
∑
k→i

hk hi =
∑
i→k

ak

• recursivity requires an iterative algorithm

• which score do we start computation from?

ESSIR 2003 Web retrieval 3 Sept. 2003

An algorithm to measure mutual reinforcement

• each page i is assigned an authority score a
(n)
i and a hub

score h
(n)
i at each step n

h
(0)
i = 1

a
(1)
i =

∑
k→i h

(0)
k

h
(1)
i =

∑
i→k a

(1)
k

a
(2)
i =

∑
k→i h

(1)
k

...

• when starting, hubs scores are set to constant values

• iteration continues until scores converge
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Note 42-1

An algorithm to measure mutual reinforcement

• let h
(0)
i = 1 for all i = 1, 2, . . .

• let N be the number of iterations

a
(n)
i =

∑
k→i

h
(n−1)
k h

(n)
i =

∑
i→k

a
(n)
k n = 1, . . . , N

• we will see that results change if a
(0)
i = 1 for all i = 1, 2, . . .

h
(n)
i =

∑
i→k

a
(n−1)
k a

(n)
i =

∑
k→i

h
(n)
k n = 1, . . . , N

Note 42-2

An algorithm to measure mutual reinforcement:
normalization

h
(0)
i = 1, i = 1, 2, . . . initialize hub scores

for n = 1, 2, . . . , N at step n
for i = 1, . . . ,m for each page i

a
(n)
i =

∑
k→i h

(n−1)
k update authority score

a
(n)
i = a

(n)
i /

√∑
j(a

(n)
i )2 normalize authority score

h
(n)
i =

∑
i→k a

(n)
k update hub score

h
(n)
i = h

(n)
i /

√∑
j(h

(n)
i )2 normalize hub score

end for
end for



Note 42-3

Remarks on the algorithm

• the theory says that the number of iterations should be infinite

• in practice, the number of iterations must be finite yet “suffi-
ciently” large – the answer to “how large?” depends on the
instance

• two facts can be shown by a counter-example (see Pretto (2002)):

– the algorithm is not symmetric, i.e. results change if com-
putation starts after initializing authority scores instead of
hub scores

– results depend on the initial values given to the hub (au-
thority) scores

• normalization changes scores but does not change page ranking

ESSIR 2003 Web retrieval 3 Sept. 2003

Hyperlink Induced Topic Search

• an application of the mutual reinforcement algorithm

• target: broad topic queries

– examples are “search engines”, “java”

– not only relevant pages but also authorities

• objective: discriminate authorities

• main ingredients:

– a conventional search engine

– some parameters

– the algorithm based on mutual reinforcement

relationship

• proposed by Kleinberg (1999)
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Hyperlink Induced Topic Search (HITS)

base set
root set

given a query q:

1. retrieve the root set (Rq)

2. expand Rq to the base set (Bq)

3. compute authorities and hubs

in Bq

4. rank pages in Bq by authority

or hub score
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Note 44-1

Main steps of Hyperlink Induced Topic Search

• let q be a query

• first a search engine retrieves the root set Rq matching q and
selects the t top ranked pages

– Rq is likely to contain many relevant pages yet they do not
link each other

• then the base set Bq is built after adding all the pages that point
to, or are pointed to by each page in Rq

– Bq is still to contain many relevant pages but is likely to
contain others that point to, or are pointed to by each page
in Rq

• the algorithm is then performed on Bq
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Adjacency matrix

1 2

3

4

5

6

7

1 2 3 4 5 6 7

1 0 1 1 1 0 0 0

2 0 0 0 0 1 1 0

3 0 0 0 0 1 1 0

4 0 0 0 0 0 1 0

5 0 0 0 0 0 0 1

6 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0
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Note 45-1

Adjacency matrix

• a set of Web pages can be described by a graph such that a
page is a node and a link is an edge

• an matrix, called “adjacency matrix”, can be associated to a
graph

• the adjacency matrix is

D = (dij) such that dij =
{

1 if i → j
0 otherwise

where i, j = 1, 2, . . . ,m and m is the number of pages
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Bibliographic coupling matrix

1 2

3

4

5

6

7

B = DD′ =

1 2 3 4 5 6 7

1 3 0 0 0 0 0 0

2 0 2 2 1 0 0 0

3 0 2 2 1 0 0 0

4 0 1 1 1 0 0 0

5 0 0 0 0 1 1 0

6 0 0 0 0 1 1 0

7 0 0 0 0 0 0 0
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Note 46-1

Bibliographic coupling matrix

• both pages i and k cite j if i → j and k → j

• note that

dijdkj =
{

1 if and only if i → j and k → j
0 otherwise

• the bibliographic coupling matrix is

B = DD′ = (bik) such that bik =
m∑

j=1

dijdkj

• bik is the number of pages that are cited by both i and k

• if D is r × s, B is r × r
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Co-citation matrix

1 2

3

4

5

6

7

C = D′D =

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 0 1 1 1 0 0 0

3 0 1 1 1 0 0 0

4 0 1 1 1 0 0 0

5 0 0 0 0 2 2 0

6 0 0 0 0 2 3 0

7 0 0 0 0 0 0 2
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Note 47-1

Co-citation matrix

• both pages j and k are cited by i if i → j and i → k

• note that

dijdik =
{

1 if and only if i → j and i → k
0 otherwise

• the co-citation matrix is

C = D′D = (cjk) such that cjk =
m∑

i=1

dijdik

• cjk is the number of pages that cite both k and j

• if D is r × s, C is s× s
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Using the coupling and co-citation matrices to
describe the algorithm

• let h(0) be the initial hub scores, C = D′D, B = DD′

• the scores at step n are

h(n) = Bnh(0)

and

a(n) = Cn−1D′h(0)

where a(1) = D′h(0)

• D might be a non-square matrix, but B and C are always

square matrices
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Note 48-1

Using the coupling and co-citation matrices to describe
the algorithm

h
(0)
i = 1 h(0) = [1, . . . , 1]′

a
(1)
i =

∑
k→i h

(0)
k =

∑
k dkih

(0)
k a(1) = D′h(0)

h
(1)
i =

∑
i→k a

(1)
k =

∑
k dika

(1)
k h(1) = Da(1) = (DD′)h(0)

a
(2)
i =

∑
k→i h

(1)
k =

∑
k dkih

(1)
k a(2) = D′h(1) = (D′D)D′h(0)

...
...
h(n) = (DD′)nh(0)

a(n) = (D′D)n−1D′h(0)

therefore

h(n) = Bnh(0) a(n) = Cn−1D′h(0)
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Uses and variations of the mutual
reinforcement relationship

• topic-based link weighting: each link i → j is weighted

with the degree to which the anchor is about the topic of

j

• statistical stemming: the mutual reinforcement

relationship is observed between stems and derivations

and is applied to find the best word split

• image retrieval: links between pages and images are

considered to find authority image, image hub/containers

(pages pointing to/containing authority images)
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Topic-based link weighting

• without weighting:

1 2

3

4

5

6

7

1 2 3 4 5 6 7

1 0 1 1 1 0 0 0

2 0 0 0 0 1 1 0

3 0 0 0 0 1 1 0

4 0 0 0 0 0 1 0

5 0 0 0 0 0 0 1

6 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0

scores after 30 steps

i 1 2 3 4 5 6 7

ai 0 0 0 0 0.62 0.79 0

hi 0 0.66 0.66 0.37 0 0 0
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Topic-based link weighting (cont.)

• with weighting:

1 2

3

4

5

6

7

1 2 3 4 5 6 7

1 0 1 2 1 0 0 0

2 0 0 0 0 1 1 0

3 0 0 0 0 1 1 0

4 0 0 0 0 0 1 0

5 0 0 0 0 0 0 2

6 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0

scores after 30 steps

i 1 2 3 4 5 6 7

ai 0 0.41 0.82 0.41 0 0 0

hi 1 0 0 0 0 0 0
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Note 51-1

Topic-based link weighting

• the weight matrix W = (wij) is used instead of D

• wij is the measure of the degree to which page i confers authority
to page j as regards to the topic

• needs to be computed at query time

• for example wij = 1 + fij where fij is the number of topic terms
occurring in the windows that are around the anchors

• in this way ranking is changed
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Link analysis-based stemming

inform
2

ed
3

ing
4

comput
3

infor
1

med
1

ming
2

informe
4

d
5

compu
6

ted
6

ting
7

compute
5

informi
7

ng
8

informin
9

g
9

computi
8

computin
10

• affix removal stemming – words are split into prefix and

suffix, a stem is a prefix, a derivation is a suffix

• the key idea is mutual reinforcement among substrings:

– stems are frequent prefixes that are followed by

derivations

– derivations are frequent suffixes that are preceded by

stems
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Link analysis-based stemming

D =

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10



1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1


• best authorities (derivations): “ed” (3) and “ing” (4) with score

0.71; the other scores are null

• best hubs (stems): “inform” (2) and “comput” (3) with score 0.71;

the other scores are null
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Note 53-1

Link analysis-based stemming

• let W be a set of words, X be the set of non-null prefixes and Y
be the set of non-null suffixes

• a link x → y exists iff there exists w ∈ W such that w = xy

• suffix/authority score and prefix/hub score

s(k)
y =

∑
w∈W :w=xy

p(k−1)
x p(k)

x =
∑

w∈W :w=xy

s(k)
y

• experimental results within CLEF are very similar to those ob-
tained using the Porter’s stemmers
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Link analysis-based image retrieval

• given a topic q, the set of pages matching q is retrieved

– matching can be performed by any function

• the set of images contained in, or linked to by the

retrieved pages is then collected

• mutual reinforcement is applied

– pages are candidate hubs

– images are candidate authorities
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Link analysis-based image retrieval (cont.)

• let D = (dpi) be the page-image adjacency matrix such

that

dpi =


1 if page p contains or links to image i

or to a page containing i

0 otherwise

• authority image score is

ai =
∑

p

dpihp =
∑
p→i

hp

• image hub or image container score is

hp =
∑

i

dpiai =
∑
p→i

ai
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Experimentation within the Web track

• it is one of the tracks of the Text Retrieval Conference

(TREC)

• based on the test collection paradigm (test documents,

test topics, relevance judgements)

• started on 1998

• main aims:

– evaluate the effectiveness of link analysis-based

methods

– experiment other tasks than ad-hoc retrieval
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Tasks

• ad-hoc: given a topic, retrieve relevant documents

• homepage finding: given a query string, find the

homepage of the site described by the query

• topic distillation: given a topic, retrieve relevant and

authority documents

• named page finding: given a query string, find the page

described by the query
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Test collections

• WT2g: 2GB and 250,000-document collection, used on

1999

• WT10g: 10GB and 1.69 million document collection,

used on 2000 and 2001

• .GOV: 18GB and 1.25 million document collection, used

on 2002 and 2003

– less, but larger documents than WT10g

– access to PDF and images available (67GB, binaries

included)
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Test topics

• the title field includes a real query

• very short queries

• sometimes misspelled queries, e.g. angioplast7
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Main findings

• link-based methods are not beneficial for the ad-hoc task

– it is not a necessary evidence

– conventional yet advanced weighting schemes are

necessary

• link-based methods might be useful for the homepage

finding task

– anchor text and URL are more effective

– page structure is effective as well

• topic distillation and named page finding did not benefit

from link structure

– document structure and anchor text were more

effective
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Some final remarks

• link analysis-based algorithms for Web retrieval are in

principle attractive

• they have shown their effectiveness in some experiments

reported by single researchers, but failed within TREC

• one of the reasons is one of the assumptions, i.e. links

represent authority assessment

• many links do not and their implementation does not

incorporate any information about authority assessment

• automatic detection of link types/classes/labels would be

a breakthrough
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Some final remarks (cont.)

• these models have been successfully employed to perform

other tasks (stemming, image retrieval)

• language can bias authority scores or PageRank values

because links are likely to occur among pages written in

the same language

• information on time is absent and young pages are less

likely pointed to than older ones
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