Web retrieval:
 Link analysis for page ranking

Authority and relevance of Web pages

- the quality of conventional IR system document collection is homogeneous
- the Web is uncontrolled and quality is highly heterogeneous
- one aspect of quality is authority
- relevance is then crossed with authority
- however information about authority is not available
- directories and categories might be a means

The role of links to measure authority

- links might supply information about page authority
- if the author of page A thinks that page B is important, relevant or more generally related, he is likely to insert a link from A to B
- two assumptions
- a link is likely to express authority of the target page
- the more the links, the greater the authority

The role of links to measure authority

- the use of links to measure authority implies that the latter is conferred to a page by another page
- this is not necessary
- one might infer authority on the basis of "stand-alone" properties, e.g. typographical features or layout
- for example, the electronic version of a journal paper would be more authoritative than a "casual" HTML page

Care when using links to measure authority

- it is uncertain that a link is likely to express the authority of the target page
- a link might not point to an authority
- a link might point to a non-authority
- a page might be pointed-to w.r.t. one or more subjects
- the number of in-links might not be a measure of authority
- a popular page is directly pointed to by many links
- authoritative pages might be less pointed-to
- link analysis based methods might let authorities emerge because deal with large numbers

Care when using links to measure authority

- automatically generated links rarely point to authoritative pages
- if they did, there would exist an automatic method to detect authorities
- advertisement links are very often pointing to non-authorities
- the methods being illustrated in this lecture are unable to let young authorities emerge - they are little pointed-to by other pages

Two link analysis approaches for Web page ranking

- Markov chains
- model navigation
- authorities link to authorities
- rank by the probability that the page is reached
- applied at indexing time
- mutual reinforcement relationship
- model authoring
- hubs link to authorities
- rank by the degree to which the page is pointed-to by hubs that point to other authorities
- applied at retrieval time

Related work

- bibliometrics and the measures of impact factors of scientific "units" (journals, papers, etc.)
- social networks and the measures of standing and social influence
- hypertext information retrieval
- hypertext structure analysis

Markov chains

- a set of states and a set of transitions between states
- $p_{i j}$ is the transition probability that state j is reached from i
- depicted as a weighted and directed graph, where nodes are states and edge weights are probabilities of transition

the sequence of states $(1,3,1,2)$ has probability $p_{1} p_{13} p_{31} p_{12}=\frac{1}{3} \frac{1}{2} 1 \frac{1}{2}=\frac{1}{12}$

Markov chains

- a Markov chain is defined as follows
- S is a discrete and finite state space $\{1,2, \ldots, m\}$ (but see below)
- the initial probability of state i is p_{i}, such that $\sum_{i} p_{i}=1$
- each page has at least one out-link, i.e. there are not "sink" states
- the probability of transition from i to j is $p_{i j}$, given i
- $\left\{p_{i 1}, \ldots p_{i m}\right\}$ is a probability distribution

$$
p_{i j} \geq 0 \quad \sum_{j} p_{i j}=1
$$

- the probability of the sequence of states $i_{0}, i_{1}, i_{2}, \ldots, i_{n-1}, i_{n}$ is defined by $p_{i_{0}} p_{i_{0} i_{1}} p_{i_{1} i_{2}} \cdots p_{i_{n-1} i_{n}}$

Markov chains

- we are considering time homogeneous or invariant Markov chains, which are a special case of Markov chains
- the transition probabilities of the more general case are defined as

$$
p_{i j}(t)=\operatorname{Pr}(j \text { is reached at time } t \mid i \text { is reached at time } t-1)
$$

- the invariant Markov chains have the property that their transition probabilities are independent of time t
- Markov chains are a special case of stochastic processes whose transition probabilities depend on states that are reached before the previous one

Stochastic processes

- S is the discrete state space and T is the discrete parameter space (in general, S or T might be continuous)
- X_{t} is a random variable depending on $t \in T$ and taking values in S
- $\left(t_{0}, t_{1}, \ldots, t_{n}, t\right)$ is finite or countably infinite and $t_{i}<t_{i+1}, t_{n}<t$
- the stochastic process $\left\{X_{t}, t \in T\right\}$ has probability function

$$
\operatorname{Pr}\left(X_{t}=x \mid X_{t_{n}}=x_{n}, X_{t_{n-1}}=x_{n-1}, \ldots, X_{t_{0}}=x_{0}\right)
$$

- with Markov chains

$$
p_{x_{n}, x}(t)=\operatorname{Pr}\left(X_{t}=x \mid X_{t_{n}}=x_{n}\right)
$$

- with invariant Markov chains

$$
p_{x_{n}, x}=\operatorname{Pr}\left(X_{t}=x \mid X_{t_{n}}=x_{n}\right)=\operatorname{Pr}\left(X_{t_{1}}=x \mid X_{t_{0}}=x_{n}\right)
$$

n-step transition probability

n-step transition probability

- by definition

$$
p_{i j}^{(1)}=p_{i j}
$$

is the one-step transition probability from i to j

- the two-step transition probability is

$$
p_{i j}^{(2)}=p_{i 1} p_{1 j}+p_{i 2} p_{2 j}+\ldots+p_{i m} p_{m j}=\sum_{k} p_{i k} p_{k j}
$$

- in general,

$$
p_{i j}^{(n)}=\sum_{k} p_{i k}^{(n-1)} p_{k j} \quad n=1,2, \ldots
$$

is the n-step transition probability, where $p_{i k}^{(0)}=1$ if $i=k$, 0 otherwise

Chapman-Kolmogorov equation

- for time homogeneous, discrete and finite Markov chains
- for any r such that $0<r<n$,

$$
\begin{equation*}
p_{i j}^{(n)}=\sum_{k \in S} p_{i k}^{(r)} p_{k j}^{(r, n)} \tag{1}
\end{equation*}
$$

State probability

$$
p_{1}^{(0)}=p_{2}^{(0)}=p_{3}^{(0)}=0.33
$$

$$
p_{i}^{(1)}=p_{1}^{(0)} p_{1 i}+p_{2}^{(0)} p_{2 i}+p_{3}^{(0)} p_{3 i}
$$

n-step state probability

- initial probability distribution

$$
p_{i}^{(0)} \quad i=1,2, \ldots m
$$

- the probability of state i after one step is

$$
p_{i}^{(1)}=p_{1}^{(0)} p_{1 i}+p_{2}^{(0)} p_{2 i}+\ldots+p_{m}^{(0)} p_{m i}=\sum_{k} p_{k}^{(0)} p_{k i}
$$

- in general, the probability of state i at step n is

$$
p_{i}^{(n)}=\sum_{k} p_{k}^{(n-1)} p_{k i}
$$

Matrix representation

$\mathbf{P}=\left[\begin{array}{ccc}0 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$	$\mathbf{p}^{(0)}=\left[\begin{array}{l}0.33 \\ 0.33 \\ 0.33\end{array}\right]$
one-step transition	initial state
probability matrix	probability vector

Matrix representation

$$
\begin{gathered}
\mathbf{P}=\left[\begin{array}{ccc}
p_{11} & \ldots & p_{1 m} \\
\vdots & & \vdots \\
p_{m 1} & \ldots & p_{m m}
\end{array}\right] \quad \mathbf{p}=\left[\begin{array}{c}
p_{1} \\
\vdots \\
p_{m}
\end{array}\right] \\
\mathbf{p}^{(n)}=\mathbf{P}^{\prime} \mathbf{p}^{(n-1)}=\left[\begin{array}{c}
\sum_{i} p_{i 1} p_{i}^{(n-1)} \\
\vdots \\
\sum_{i} p_{i m} p_{i}^{(n-1)}
\end{array}\right]
\end{gathered}
$$

Matrix representation of n-step transition probability

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccc}
0.5 & 0 & 0.5 \\
1 & 0 & 0 \\
0 & 0.5 & 0.5
\end{array}\right]} & =\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
\end{array} \begin{array}{c}
\mathbf{P} \\
\mathbf{P}^{2}
\end{array} \begin{array}{ccc}
{\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]} \\
\mathbf{P} \\
0.375 & 0.219 & 0.406
\end{array}\right]-\left[\begin{array}{ccc}
0.406 & 0.188 & 0.406 \\
0.438 & 0.187 & 0.375 \\
\mathbf{P}^{10} & =\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \ldots\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \\
& =\underbrace{\mathbf{P}}_{10 \text { times }}
\end{array}\right.
$$

Matrix representation of n-step transition probability

$$
\begin{aligned}
\mathbf{P}^{n} & =\underbrace{\mathbf{P} \cdots \mathbf{P}}_{n \text { times }} \\
& =\left[\begin{array}{ccc}
p_{11}^{(n)} & \cdots & p_{1 m}^{(n)} \\
\vdots & & \vdots \\
p_{m 1}^{(n)} & \ldots & p_{m m}^{(n)}
\end{array}\right]
\end{aligned}
$$

Matrix representation of n-step state probability

$$
\begin{aligned}
{\left[\begin{array}{l}
0.333 \\
0.167 \\
0.500
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 0 & 1 \\
0.5 & 0 & 0 \\
0.5 & 1 & 0
\end{array}\right]
\end{aligned} \begin{aligned}
& {\left[\begin{array}{l}
0.333 \\
0.333 \\
0.333
\end{array}\right]} \\
& \mathbf{p}^{(1)}
\end{aligned}
$$

Transition probability and state probability at step n

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
0.417 \\
0.166 \\
0.417
\end{array}\right]} & =\left[\begin{array}{ccc}
0 & 0 & 1 \\
0.5 & 0 & 0 \\
0.5 & 1 & 0
\end{array}\right]
\end{array} \begin{array}{c}
{\left[\begin{array}{l}
0.333 \\
0.250 \\
0.417
\end{array}\right]} \\
\mathbf{p}^{(4)}
\end{array}=\begin{array}{c}
\mathbf{P}^{(3)} \\
\end{array}=\begin{array}{ccc}
{\left[\begin{array}{ccc}
0.25 & 0.50 & 0.50 \\
0.25 & 0 & 0.25 \\
0.50 & 0.50 & 0.25
\end{array}\right]}
\end{array} \begin{array}{c}
0.333 \\
0.333 \\
0.333
\end{array}\right] .
$$

Transition probability and state probability at step n

- n-step state probability

$$
\mathbf{p}^{(n)}=\mathbf{P}^{\prime} \mathbf{p}^{(n-1)}
$$

- relationship with n-step transition probability

$$
\begin{aligned}
\mathbf{p}^{(n)} & =\mathbf{P}^{\prime} \mathbf{p}^{(n-1)} \\
& =\mathbf{P}^{\prime}\left(\mathbf{P}^{\prime} \mathbf{p}^{(n-2)}\right) \\
& =\mathbf{P}^{\prime}\left(\mathbf{P}^{\prime} \ldots\left(\mathbf{P}^{\prime} \mathbf{p}^{(0)}\right)\right) \\
& =\mathbf{P}^{n n^{\prime}} \mathbf{p}^{(0)}
\end{aligned}
$$

Stationarity

$\left.\begin{array}{rl}\mathbf{p}^{(n)} & =\mathbf{P}^{\prime}\end{array} \begin{array}{c}\mathbf{p}^{(n-1)} \\ {\left[\begin{array}{l}0.4 \\ 0.2 \\ 0.4\end{array}\right]}\end{array}\right)=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0.5 & 0 & 0 \\ 0.5 & 1 & 0\end{array}\right] \quad\left[\begin{array}{l}0.4 \\ 0.2 \\ 0.4\end{array}\right]$

chain at step 0

chain at step $n>0$ - note that the state probability is stationary

Stationarity and matrices

- \mathbf{p} is stationary if

$$
p_{j}^{(n)}=p_{j}^{(n-1)} \quad n=1,2, \ldots \quad j=1,2, \ldots
$$

- matrix form

$$
\mathbf{p}=\mathbf{P}^{\prime} \mathbf{p}
$$

where

$$
\mathbf{p}=\mathbf{p}^{(n)} \quad n=1,2, \ldots
$$

An irreducible chain

- let us consider the "solid" sub-graph with states $\{1,2,3\}$
- each state can be reached from any other state after $n \geq 0$ steps
- then every pair of states communicate between them within one chain
- the sub-chain is closed because outside states cannot be reached
- $\{1,2,3\}$ is irreducible because there are not closed subchains of it

A non-irreducible chain

- some states cannot be reached from some states
- there are states that do not communicate between them within the chain
- the chain is not irreducible because contains two closed subchains
- which are irreducible

Irreducibility

- state j is accessible from state i if j can be reached from i in a finite number of steps
- a chain is closed if no state outside is accessible from any state inside it
- states i and j are said to communicate if they are accessible to each other
- communication is an equivalence relationship and S can be partitioned into equivalence classes such that states belonging to different equivalence classes do not communicate with each other
- if there is one equivalence class, the chain is irreducible

Persistency and transiency

- 4,5 are transient - eventual return is uncertain
- $1,2,3$ are persistent - eventual return is certain

Persistency and transiency

- a state i is persistent if and only if, starting from state i, eventual return of the chain to i is certain
- otherwise i is transient
- if a state i is an element of a equivalence class and i is persistent (transient), then all the other states of the same class are persistent (transient)

A periodic chain

- $1,2,3$ are periodic

Periodicity

- another example is given by

$$
\mathbf{P}=\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

- $p_{i i}^{(n)}=0$ if n is odd and $p_{i i}^{(n)}>0$ if n is even, then state i is periodic and period is two
- state i has period is three if $p_{i i}^{(n)}>0$ if $n=3 k, 0$ otherwise
- in general, the period of state i is the greatest common divisor of all integers $n \geq 1$ for which $p_{i i}^{(n)}>0$
- if every state of a class has period one, then all the states are aperiodic and the class is aperiodic
- if $p_{i j}>0, i, j=1,2, \ldots, m$ then the chain is irreducible, persisten and aperiodic

Limit probabilities of an irreducible, a-periodic and persistent chain

$$
\left.\begin{array}{c}
\mathbf{P}=\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \mathbf{P}^{30}=\left[\begin{array}{lll}
0.4 & 0.2 & 0.4 \\
0.4 & 0.2 & 0.4 \\
0.4 & 0.2 & 0.4
\end{array}\right] \\
{\left[\begin{array}{l}
0.4 \\
0.2 \\
0.4
\end{array}\right]}
\end{array}=\left[\begin{array}{ccc}
0.4 & 0.4 & 0.4 \\
0.2 & 0.2 & 0.2 \\
0.4 & 0.4 & 0.4
\end{array}\right] \begin{array}{c}
p_{1}^{(0)} \\
p_{2}^{(0)} \\
p_{3}^{(0)}
\end{array}\right] \quad\left[\begin{array}{c}
\mathbf{p}^{(0)}
\end{array}\right.
$$

Limit probabilities of two closed sub-chains

$$
\mathbf{P}=\left[\begin{array}{ccccc}
0 & 0.5 & 0.5 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \begin{array}{c||cc|cc}
n & 0 & 30 & 0 & 30 \\
\hline p_{1}^{(n)} & 0.3 & 0.36 & 0.07 & 0.08 \\
p_{2}^{(n)} & 0.3 & 0.18 & 0.07 & 0.04 \\
p_{3}^{(n)} & 0.3 & 0.36 & 0.06 & 0.08 \\
p_{4}^{(n)} & 0.05 & 0.07 & 0.4 & 0.53 \\
p_{5}^{(n)} & 0.05 & 0.03 & 0.4 & 0.27
\end{array}
$$

Limit probabilities of transient and persistent chains

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccccc}
0 & 0.5 & 0.5 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0.5 & 0 & 0.5 & 0.5
\end{array}\right] \quad \mathbf{P}^{30}=\left[\begin{array}{ccccc}
0.4 & 0.2 & 0.4 & 0 & 0 \\
0.4 & 0.2 & 0.4 & 0 & 0 \\
0.4 & 0.2 & 0.4 & 0 & 0 \\
0.4 & 0.2 & 0.4 & 0 & 0 \\
0.4 & 0.2 & 0.4 & 0 & 0
\end{array}\right] \\
& \begin{aligned}
{\left[\begin{array}{c}
0.4 \\
0.2 \\
0.4 \\
0 \\
0
\end{array}\right] } & =\left[\begin{array}{ccccc}
0.4 & 0.4 & 0.4 & 0.4 & 0.4 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.4 & 0.4 & 0.4 & 0.4 & 0.4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned} \begin{array}{c}
{\left[\begin{array}{c}
p_{1}^{(0)} \\
p_{2}^{(0)} \\
p_{3}^{(0)} \\
p_{4}^{(0)} \\
p_{5}^{(0)}
\end{array}\right]} \\
\mathbf{p}^{(0)}
\end{array}
\end{aligned}
$$

Limit probabilities of a periodic chain

$$
\mathbf{P}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0.5 & 0 & 0.5 & 0
\end{array}\right] \quad \begin{array}{c|cccccc}
n & 0 & 10 & 20 & 30 & 40 & \ldots \\
\hline p_{1}^{(n)} & 0.20 & 0.29 & 0.38 & 0.32 & 0.30 & \\
p_{2}^{(n)} & 0.20 & 0.31 & 0.30 & 0.38 & 0.32 & \\
p_{3}^{(n)} & 0.20 & 0.37 & 0.32 & 0.30 & 0.38 & \\
p_{4}^{(n)} & 0.20 & 0.02 & 0.00 & 0.00 & 0.00 & \\
p_{5}^{(n)} & 0.20 & 0.01 & 0.00 & 0.00 & 0.00 &
\end{array}
$$

Limit transition probabilities of an irreducible chain

\mathbf{P}^{1}	1	2	3
1	0	0.50	0.50
2	0	0	1.00
3	1.00	0	0

\mathbf{P}^{5}	1	2	3
1	0.50	0.12	0.38
2	0.50	0.25	0.25
3	0.25	0.25	0.50

\mathbf{P}^{10}	1	2	3
1	0.41	0.19	0.41
2	0.44	0.19	0.37
3	0.37	0.22	0.41

\mathbf{P}^{30}	1	2	3
1	0.40	0.20	0.40
2	0.40	0.20	0.40
3	0.40	0.20	0.40

Limit transition probabilities of an irreducible chain

Limit transition probabilities of an non-irreducible chain

\mathbf{P}^{1}	1	2	3	4	5
1	0	0.50	0.50	0	0
2	0	0	1.00	0	0
3	1.00	0	0	0	0
4	0	0	0	0.50	0.50
5	0	0	0	1	0
\mathbf{P}^{10}	1	2	3	4	5
1	0.41	0.20	0.39	0	0
2	0.37	0.22	0.41	0	0
3	0.40	0.19	0.41	0	0
4	0	0	0	0.67	0.33
5	0	0	0	0.67	0.33

\mathbf{P}^{5}	1	2	3	4	5
1	0.37	0.25	0.38	0	0
2	0.25	0.25	0.50	0	0
3	0.50	0.12	0.38	0	0
4	0	0	0	0.67	0.33
5	0	0	0	0.66	0.34

\mathbf{P}^{30}	1	2	3	4	5
1	0.40	0.20	0.40	0	0
2	0.40	0.20	0.40	0	0
3	0.40	0.20	0.40	0	0
4	0	0	0	0.67	0.33
5	0	0	0	0.67	0.33

Limit transition probabilities of another non-irreducible chain

\mathbf{P}^{1}	1	2	3	4	5
1	0	0.50	0.50	0	0
2	0	0	1.00	0	0
3	1.00	0	0	0	0
4	0	0	0	0.50	0.50
5	0	0.50	0	0.50	0.50

\mathbf{P}^{5}	1	2	3	4	5
1	0.37	0.25	0.38	0	0
2	0.25	0.25	0.50	0	0
3	0.50	0.12	0.38	0	0
4	0.25	0.14	0.28	0.20	0.13
5	0.31	0.23	0.25	0.13	0.08

\mathbf{P}^{10}	1	2	3	4	5
1	0.41	0.20	0.39	0	0
2	0.38	0.22	0.39	0	0
3	0.41	0.19	0.40	0	0
4	0.39	0.19	0.37	0.07	0.04
5	0.39	0.19	0.36	0.04	0.03

\mathbf{P}^{30}	1	2	3	4	5
1	0.40	0.20	0.40	0	0
2	0.40	0.20	0.40	0	0
3	0.40	0.20	0.40	0	0
4	0.40	0.20	0.40	0	0
5	0.40	0.20	0.40	0	0

Note

Limit transition probabilities of a periodic chain

\mathbf{P}^{1}	1	2	3	4	5
1	0	1.00	0	0	0
2	0	0	1.00	0	0
3	1.00	0	0	0	0
4	0	0	0	0.50	0.50
5	0	0.50	0	0.50	0

\mathbf{P}^{5}	1	2	3	4	5
1	1	0	0	0	0
2	0	1	0	0	0
3	0	0	1	0	0
4	0.13	0.20	0.34	0.20	0.13
5	0.56	0.17	0.06	0.13	0.08

\mathbf{P}^{10}	1	2	3	4	5
1	0	0	1	0	0
2	1	0	0	0	0
3	0	1	0	0	0
4	0.24	0.42	0.22	0.07	0.04
5	0.20	0.11	0.62	0.04	0.03

\mathbf{P}^{30}	1	2	3	4	5
1	0	1	0	0	0
2	0	0	1	0	0
3	1	0	0	0	0
4	0.45	0.26	0.29	0	0
5	0.13	0.65	0.23	0	0

Limit transition probabilities

- if a chain is irreducible, persistent (all states are persistent) and aperiodic

$$
\lim _{n \rightarrow \infty} p_{i j}^{(n)}=p_{j} \quad j=1,2, \ldots
$$

where $\left\{p_{j}\right\}$ is stationary and $p_{j}>0$ for every j

- if not persistent, $p_{j} \geq 0$
- matrix form

$$
\lim _{n \rightarrow \infty} \mathbf{P}^{n}=\left[\begin{array}{ccc}
p_{1} & \ldots & p_{m} \\
\vdots & & \vdots \\
p_{1} & \cdots & p_{m}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p} \\
\vdots \\
\mathbf{p}
\end{array}\right]=\mathbf{p}
$$

Limit state probabilities

- since

$$
p_{j}^{(n)}=\sum_{i \rightarrow j} p_{j}^{(n-1)} p_{i j}=\sum_{i \rightarrow j} p_{j}^{(0)} p_{i j}^{(n)}
$$

then

$$
\begin{aligned}
p_{j} & =\lim _{n \rightarrow \infty} p_{j}^{(n)} \\
& =\lim _{n \rightarrow \infty} \sum_{i \rightarrow j} p_{j}^{(0)} p_{i j}^{(n)} \\
& =\sum_{i \rightarrow j} p_{j}^{(0)} \lim _{n \rightarrow \infty} p_{i j}^{(n)}
\end{aligned}
$$

Intuitive view of PageRank

- the Web "is a" Markov chain
- the PageRank of page j is the probability that the user reaches j through $i \rightarrow j$ given that he reached i
- all the links from i to j are counted once
- the PageRank of page j depends on those of the pages linking to it
- the more j is linked by pages with high PageRank, the higher its PageRank
- the formulation is recursive thus requiring an initial probability
- proposed by Brin and Page (1998)

PageRank and Markov chains

- the set of Web pages is the set of states
- initial probability

$$
p_{j}^{(0)}
$$

that the user is at page j at the beginning of navigation

- after n steps

$$
p_{j}^{(n)}=\sum_{i \rightarrow j} p_{j}^{(n-1)} p_{i j} \text { where } p_{i j}=\frac{1}{o_{i}}
$$

- the PageRank of j is

$$
\lim _{n \rightarrow \infty} p_{j}^{(n)}
$$

PageRank and Markov chains

- S is the set of Web pages, and is finite yet very large
- the initial probability does not depend on the time at which the user starts navigation
- also the transition probabilities do not
- PageRank is then modeled by time homogeneous (invariant) chains
- the arrival at state j depends on the last step only and the states at which the user has arrived before are ignored - this is the Markov property
- transition probability is independent of visit time
- chains are time discrete and state discrete

Requirements for PageRank formulation

- the chain must be a Markov chain, then $p_{i j} \geq 0$ and $\sum_{j} p_{i j}=1$, therefore $o_{i}>0$ for all i
- the chain must be a-periodic otherwise PageRank does not converge
- the chain must be persistent and irreducible, otherwise:
- there are more than one irreducible and persistent disjoint subchains
* the PageRank depends on the initial probability
- there are transient pages and persistent pages
* transient pages have null PageRank and are indistiguishable, while persistent pages absorb all the PageRank distribution

Decomposition of a chain

- the states of a Markov chain can be divided, in a unique manner, into disjoint sets T, C_{1}, C_{2}, \ldots such that
- T consists of all transient states
- if $i \in C_{k}$ then every $j \in C_{k}$ can be reached from i, whereas every $j \in C_{h}, h \neq k$ cannot be reached from i
- this implies that C_{k} is irreducible and contains only persistent states

Converging to PageRank

- a page can be reached through actual links (solid edge) with probability $1-d$ or other ways (dashed edge) with probability d
- other ways are URL typing, search engines, bookmarks, etc.
- a solid edge is weighted by the probability $p_{i j}$ that $i \rightarrow j$ is followed
- a dashed edge is weighted by the probability $q_{i j}$ that j is reached from i in another way
- if there were i such that $o_{i}=0$, then $d=1$

Converging to PageRank

- from the original formulation, PageRank of page i is the limit probability that a random surfer is at i when navigating
- if links are the only means the surfer easily get into a loop (periodicity) or leaves pages for ever (transiency)
- to extend it, note that surfers exploit alternative ways of access - search engines, "back" button, URL typing box - thus every page is potentially accessible
- if surfers fall into a "sink" page, then damping to another page is mandatory - this is why $d=1$ for that page

Converging to PageRank (cont.)

Converging to PageRank

- let d be the probability that the surfer gets page j through alternative ways of access independently of starting page (damping factor)
- $1-d$ is the probability that the surfer gets page j through in-links
- the transition probability is

$$
t_{i j}= \begin{cases}(1-d) p_{i j}+d q_{j} & \text { if } o_{i}>0 \\ q_{j} & \text { if } o_{i}=0\end{cases}
$$

- state probability is defined as before

$$
p_{j}^{(n)}=\sum_{i \rightarrow j} p_{i}^{(n-1)} t_{i j} \quad n=1,2, \ldots
$$

- this redefinition leads to a irreducible, persistent and aperiodic Markov chain - PageRank exists and is unique
- for nodes without out-links, d must be 1

Converging to PageRank (cont.)

Converging to PageRank

- let

$$
q_{j}=\frac{1}{m} \text { and } \sum_{j} p_{i j}=1
$$

then

$$
\sum_{j \in S} q_{j}=1 \quad \sum_{j \in S} t_{i j}=1 \quad i=1,2, \ldots, m
$$

- moreover $t_{i j}>0, i, j=1,2, \ldots, m$
- then the chain is irreducible, persistent and aperiodic, and a unique PageRank exists
- note that this reformulation is sufficient yet not necessary to make PageRank unique

Some extensions on PageRank

1. page-sensitive damping factor: damping factor is no longer uniform but changes according to the linked pages
2. topic-sensitive PageRank: damping factor is no longer uniform but changes according to the query topic
3. transition probabilities might be estimated in different ways

Page-sensitive damping factor

- a more general formulation of the transition probability of the PageRank chain would be

$$
t_{i j}=\left(1-d_{i}\right) p_{i j}+d_{i} q_{j}
$$

where the damping factor depends on page i

- the rationale is that damping is, for example, more likely if the current page is little useful

Page-sensitive damping factor

- note that $\left\{t_{i j}\right\}$ is still a transition probability of a irreducible, persistent and aperiodic chain

$$
\begin{aligned}
t_{i j} \geq 0 & \\
\sum_{j} t_{i j} & =\left(1-d_{i}\right) \sum_{j} p_{i j}+d_{i} \sum_{j} q_{j} \\
& =1-d_{i}+d_{i} \\
& =1
\end{aligned}
$$

provided that $\sum_{j} p_{i j}=1$

- an example is given by "sink pages" for which $d_{i}=1$

Topic-sensitive PageRank

- PageRank is computed once for each given Web graph
- it is independent of the query topic
- to make PageRank topic-sensitive, a set of predefined topics is selected
- for each topic a set of relevant pages is compiled
- PageRank is computed for each topic
- for each query the most probable topic is selected
- pages are ranked by the PageRank from the selected topic and the probability that the topic describes the query

Topic-sensitive PageRank

Topic-sensitive PageRank

- let us consider the 6-state Markov chain ($t_{i j}$ is omitted for sake of simplicity)
- damping can occur to relevant pages only
- $q_{j}=\frac{1}{2}$ because there are 2 relevant pages
- to rank relevant pages, the subchain must be irreducible
- to make it irreducible, add all the pages, i.e. $\{3,4\}$ being pointedto by each relevant page
- $\{2,3,4,5\}$ is the unique irreducible, persistent and a-periodic subchain - PageRank is unique
- $\{1,6\}$ are transient - PageRank is null

Topic-sensitive PageRank

- let I be a subset of relevant pages and

$$
q_{j}=\frac{1}{r} \quad \text { if } j \in I, \quad q_{j}=0 \text { otherwise }
$$

- C is the set of states that can be reached from I
- C is an irreducible, persistent and aperiodic class
- C is unique, PageRank exists positive and is unique for C whereas the pages outside I have null PageRank
- see Page et al. (1998), Haveliwala (2002), Pretto (2002)

Alternative transition probability estimators

- if multiple links $i \rightarrow j$ are distinctly considered

$$
p_{i j}=\frac{l_{i j}}{l_{i}}
$$

where $l_{i j}$ is the number of distinct links $i \rightarrow j$ out of the $l_{i}=\sum_{j} l_{i j}$ total out-links from i

- using automatic hypertext generation methods

$$
p_{i j}=\frac{\cos \left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)}{\sum_{j} \cos \left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)}
$$

means that $p_{i j}$ is function of the cosine of the angle between the keyword vector representing i and the keyword vector representing j

Alternative transition probability estimators

- the first estimator is based on the assumption that the distinct links are equivalently considered
- yet there might be some links being more likely to be followed, e.g. the one whose anchor is a bold text
- the second estimator might be replaced by the more "natural"

$$
p_{i j}=f(\operatorname{Pr}(\text { relevance } \mid i, j))
$$

that means that $p_{i j}$ is function of the probability that j is relevant to the information need represented by i

- note that transition probabilities are topic sensitive and must be either computed at retrieval time or pre-computed for predefined topics

A couple of remarks on PageRank

1. in the seminal paper the PageRank formulation is slighly different
2. given a graph, page ranking depends on the damping factor

The original PageRank

- in their seminal paper, Brin and Page wrote

$$
p_{j}^{\prime}=(1-c)+c \sum_{i \rightarrow j} p_{i}^{\prime} p_{i j}
$$

- note that

$$
\sum_{j} p_{j}^{\prime}=\sum_{j}\left[(1-c)+c \sum_{i \rightarrow j} p_{i}^{\prime} p_{i j}\right]=m(1-c)+c \sum_{j} \sum_{i \rightarrow j} p_{i}^{\prime} p_{i j}=m
$$

- the question is whether this imprecision makes p^{\prime} different from p
- one can show that

$$
p^{\prime}=m p
$$

thus the PageRank values change but ranking does not

Dependency of ranking on the damping factor

- PageRank aims at ranking pages using links only
- the damping factor should be a parameter to make PageRank unique
- unfortunately, not only the PageRank values depend on the damping factor, but also page ranking does
- for example, the chain with transition probability matrix

$$
\left[\begin{array}{ccccc}
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0.5 & 0.5
\end{array}\right]
$$

ranks pages with $d=0.49$ differently if $d=0.51$

- see Pretto (2002)

Mutual reinforcement relationship

popular page

authority and hubs

Mutual reinforcement relationship

- a popular page is directly pointed-to by many pages that do not frequently point to other pages
- an authoritative page is pointed-to by many pages, called "hub" that do frequently point to other (authoritative) pages
- authorities are pointed to by many hubs and hubs points to many authorities
- the more the page is pointed to by hubs, the more the page is authority
- the more the page point authorities, the more the page is hub

Computation of authority and page scores

$$
\begin{aligned}
& a_{4}=h_{1}+h_{2}+h_{3} \\
& h_{4}=a_{5}+a_{6}+a_{7}
\end{aligned}
$$

An example of computation of authority and page scores

- after 10 steps, we have:

i	1	2	3	4	5	6	7
a_{i}	0	0.01	0.01	0.01	0.62	0.79	0
h_{i}	0.02	0.66	0.66	0.37	0	0	0

- note that 1 is a poor hub yet there are 3 out-links and
- that 7 is a poor authority yet there are 2 in-links

A formalization of the mutual reinforcement relationship - each page i is assigned an authority score a_{i} and a hub score h_{i}

- mutual reinforcement relationship

$$
a_{i}=\sum_{k \rightarrow i} h_{k} \quad h_{i}=\sum_{i \rightarrow k} a_{k}
$$

- recursivity requires an iterative algorithm
- which score do we start computation from?

An algorithm to measure mutual reinforcement

- each page i is assigned an authority score $a_{i}^{(n)}$ and a hub score $h_{i}^{(n)}$ at each step n

$$
\begin{aligned}
h_{i}^{(0)} & =1 \\
a_{i}^{(1)} & =\sum_{k \rightarrow i} h_{k}^{(0)} \\
h_{i}^{(1)} & =\sum_{i \rightarrow k} a_{k}^{(1)} \\
a_{i}^{(2)} & =\sum_{k \rightarrow i} h_{k}^{(1)}
\end{aligned}
$$

- when starting, hubs scores are set to constant values
- iteration continues until scores converge

An algorithm to measure mutual reinforcement

- let $h_{i}^{(0)}=1$ for all $i=1,2, \ldots$
- let N be the number of iterations

$$
a_{i}^{(n)}=\sum_{k \rightarrow i} h_{k}^{(n-1)} \quad h_{i}^{(n)}=\sum_{i \rightarrow k} a_{k}^{(n)} \quad n=1, \ldots, N
$$

- we will see that results change if $a_{i}^{(0)}=1$ for all $i=1,2, \ldots$

$$
h_{i}^{(n)}=\sum_{i \rightarrow k} a_{k}^{(n-1)} \quad a_{i}^{(n)}=\sum_{k \rightarrow i} h_{k}^{(n)} \quad n=1, \ldots, N
$$

Note
An algorithm to measure mutual reinforcement: normalization

$$
\begin{aligned}
& h_{i}^{(0)}=1, i=1,2, \ldots \\
& \text { for } n=1,2, \ldots, N \\
& \text { for } i=1, \ldots, m \\
& a_{i}^{(n)}=\sum_{k \rightarrow i} h_{k}^{(n-1)} \\
& a_{i}^{(n)}=a_{i}^{(n)} / \sqrt{\sum_{j}\left(a_{i}^{(n)}\right)^{2}} \\
& h_{i}^{(n)}=\sum_{i \rightarrow k} a_{k}^{(n)} \\
& h_{i}^{(n)}=h_{i}^{(n)} / \sqrt{\sum_{j}\left(h_{i}^{(n)}\right)^{2}} \\
& \text { end for }
\end{aligned}
$$

end for

Remarks on the algorithm

- the theory says that the number of iterations should be infinite
- in practice, the number of iterations must be finite yet "sufficiently" large - the answer to "how large?" depends on the instance
- two facts can be shown by a counter-example (see Pretto (2002)):
- the algorithm is not symmetric, i.e. results change if computation starts after initializing authority scores instead of hub scores
- results depend on the initial values given to the hub (authority) scores
- normalization changes scores but does not change page ranking

Hyperlink Induced Topic Search

- an application of the mutual reinforcement algorithm
- target: broad topic queries
- examples are "search engines", "java"
- not only relevant pages but also authorities
- objective: discriminate authorities
- main ingredients:
- a conventional search engine
- some parameters
- the algorithm based on mutual reinforcement relationship
- proposed by Kleinberg (1999)

Hyperlink Induced Topic Search (HITS)

given a query q :

1. retrieve the root set $\left(R_{q}\right)$
2. expand R_{q} to the base set $\left(B_{q}\right)$
3. compute authorities and hubs in B_{q}
4. rank pages in B_{q} by authority or hub score

Main steps of Hyperlink Induced Topic Search

- let q be a query
- first a search engine retrieves the root set R_{q} matching q and selects the t top ranked pages
- R_{q} is likely to contain many relevant pages yet they do not link each other
- then the base set B_{q} is built after adding all the pages that point to, or are pointed to by each page in R_{q}
- B_{q} is still to contain many relevant pages but is likely to contain others that point to, or are pointed to by each page in R_{q}
- the algorithm is then performed on B_{q}

Adjacency matrix

	1	2	3	4	5	6	7
1	0	1	1	1	0	0	0
2	0	0	0	0	1	1	0
3	0	0	0	0	1	1	0
4	0	0	0	0	0	1	0
5	0	0	0	0	0	0	1
6	0	0	0	0	0	0	1
7	0	0	0	0	0	0	0

Adjacency matrix

- a set of Web pages can be described by a graph such that a page is a node and a link is an edge
- an matrix, called "adjacency matrix", can be associated to a graph
- the adjacency matrix is

$$
\mathbf{D}=\left(d_{i j}\right) \quad \text { such that } \quad d_{i j}= \begin{cases}1 & \text { if } i \rightarrow j \\ 0 & \text { otherwise }\end{cases}
$$

where $i, j=1,2, \ldots, m$ and m is the number of pages

Bibliographic coupling matrix

$\mathbf{B}=\mathbf{D D}^{\prime}=$| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 1 | 2 | 3 | 4 | 5 | 6 |

Bibliographic coupling matrix

- both pages i and k cite j if $i \rightarrow j$ and $k \rightarrow j$
- note that

$$
d_{i j} d_{k j}= \begin{cases}1 & \text { if and only if } i \rightarrow j \text { and } k \rightarrow j \\ 0 & \text { otherwise }\end{cases}
$$

- the bibliographic coupling matrix is

$$
\mathbf{B}=\mathbf{D D}^{\prime}=\left(b_{i k}\right) \quad \text { such that } \quad b_{i k}=\sum_{j=1}^{m} d_{i j} d_{k j}
$$

- $b_{i k}$ is the number of pages that are cited by both i and k
- if \mathbf{D} is $r \times s, \mathbf{B}$ is $r \times r$

Co-citation matrix

$\mathbf{C}=\mathbf{D}^{\prime} \mathbf{D}=$| | | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 4 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 2 | 2 | 0 |
| 6 | 1 | 1 | 1 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 2 | 3 | 0 | |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Co-citation matrix

- both pages j and k are cited by i if $i \rightarrow j$ and $i \rightarrow k$
- note that

$$
d_{i j} d_{i k}= \begin{cases}1 & \text { if and only if } i \rightarrow j \text { and } i \rightarrow k \\ 0 & \text { otherwise }\end{cases}
$$

- the co-citation matrix is

$$
\mathbf{C}=\mathbf{D}^{\prime} \mathbf{D}=\left(c_{j k}\right) \quad \text { such that } \quad c_{j k}=\sum_{i=1}^{m} d_{i j} d_{i k}
$$

- $c_{j k}$ is the number of pages that cite both k and j
- if \mathbf{D} is $r \times s, \mathbf{C}$ is $s \times s$

Using the coupling and co-citation matrices to describe the algorithm

- let $\mathbf{h}^{(0)}$ be the initial hub scores, $\mathbf{C}=\mathbf{D}^{\prime} \mathbf{D}, \mathbf{B}=\mathbf{D D}^{\prime}$
- the scores at step n are

$$
\mathbf{h}^{(n)}=\mathbf{B}^{n} \mathbf{h}^{(0)}
$$

and

$$
\mathbf{a}^{(n)}=\mathbf{C}^{n-1} \mathbf{D}^{\prime} \mathbf{h}^{(0)}
$$

where $\mathbf{a}^{(1)}=\mathbf{D}^{\prime} \mathbf{h}^{(0)}$

- D might be a non-square matrix, but \mathbf{B} and \mathbf{C} are always square matrices

Using the coupling and co-citation matrices to describe the algorithm

$$
\begin{array}{llll}
h_{i}^{(0)} & =1 & & \begin{array}{l}
\mathbf{h}^{(0)}=[1, \ldots, 1]^{\prime}
\end{array} \\
a_{i}^{(1)} & =\sum_{k \rightarrow i} h_{k}^{(0)} & =\sum_{k} d_{k i} h_{k}^{(0)} & \begin{array}{l}
\mathbf{a}^{(1)}=\mathbf{D}^{\prime} \mathbf{h}^{(0)}
\end{array} \\
h_{i}^{(1)}=\sum_{i \rightarrow k} a_{k}^{(1)} & =\sum_{k} d_{i k} a_{k}^{(1)} & \mathbf{h}^{(1)}=\mathbf{D a}^{(1)} & =\left(\mathbf{D D}^{\prime}\right) \mathbf{h}^{(0)} \\
a_{i}^{(2)}=\sum_{k \rightarrow i} h_{k}^{(1)}=\sum_{k} d_{k i} h_{k}^{(1)} & \mathbf{a}^{(2)}=\mathbf{D}^{\prime} \mathbf{h}^{(1)} & =\left(\mathbf{D}^{\prime}{\mathbf{D}) \mathbf{D}^{\prime} \mathbf{h}^{(0)}}^{\vdots}\right. & \\
& & & \\
& & & =\left(\mathbf{D D}^{\prime}\right)^{n} \mathbf{h}^{(0)} \\
& & \mathbf{h}^{(n)} & =\left(\mathbf{D}^{\prime} \mathbf{D}\right)^{n-1} \mathbf{D}^{\prime} \mathbf{h}^{(0)}
\end{array}
$$

therefore

$$
\mathbf{h}^{(n)}=\mathbf{B}^{n} \mathbf{h}^{(0)}
$$

$$
\mathbf{a}^{(n)}=\mathbf{C}^{n-1} \mathbf{D}^{\prime} \mathbf{h}^{(0)}
$$

Uses and variations of the mutual reinforcement relationship

- topic-based link weighting: each link $i \rightarrow j$ is weighted with the degree to which the anchor is about the topic of j
- statistical stemming: the mutual reinforcement relationship is observed between stems and derivations and is applied to find the best word split
- image retrieval: links between pages and images are considered to find authority image, image hub/containers (pages pointing to/containing authority images)

Topic-based link weighting

- without weighting:

	1	2	3	4	5	6	7
1	0	1	1	1	0	0	0
2	0	0	0	0	1	1	0
3	0	0	0	0	1	1	0
4	0	0	0	0	0	1	0
5	0	0	0	0	0	0	1
6	0	0	0	0	0	0	1
7	0	0	0	0	0	0	0

scores after 30 steps

i	1	2	3	4	5	6	7
a_{i}	0	0	0	0	0.62	0.79	0
h_{i}	0	0.66	0.66	0.37	0	0	0

Topic-based link weighting (cont.)

- with weighting:

	1	2	3	4	5	6	7
1	0	1	2	1	0	0	0
2	0	0	0	0	1	1	0
3	0	0	0	0	1	1	0
4	0	0	0	0	0	1	0
5	0	0	0	0	0	0	2
6	0	0	0	0	0	0	1
7	0	0	0	0	0	0	0

scores after 30 steps

i	1	2	3	4	5	6	7
a_{i}	0	0.41	0.82	0.41	0	0	0
h_{i}	1	0	0	0	0	0	0

Topic-based link weighting

- the weight matrix $\mathbf{W}=\left(w_{i j}\right)$ is used instead of \mathbf{D}
- $w_{i j}$ is the measure of the degree to which page i confers authority to page j as regards to the topic
- needs to be computed at query time
- for example $w_{i j}=1+f_{i j}$ where $f_{i j}$ is the number of topic terms occurring in the windows that are around the anchors
- in this way ranking is changed

Link analysis-based stemming

- affix removal stemming - words are split into prefix and suffix, a stem is a prefix, a derivation is a suffix
- the key idea is mutual reinforcement among substrings:
- stems are frequent prefixes that are followed by derivations
- derivations are frequent suffixes that are preceded by stems

Link analysis-based stemming

$\mathbf{D}=$| 1 |
| :---: |
| 1 |
| 2 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |\(\left[\begin{array}{lllllllll}1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9

1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1\end{array}\right]\)

- best authorities (derivations): "ed" (3) and "ing" (4) with score 0.71 ; the other scores are null
- best hubs (stems): "inform" (2) and "comput" (3) with score 0.71; the other scores are null

Link analysis-based stemming

- let W be a set of words, X be the set of non-null prefixes and Y be the set of non-null suffixes
- a link $x \rightarrow y$ exists iff there exists $w \in W$ such that $w=x y$
- suffix/authority score and prefix/hub score

$$
s_{y}^{(k)}=\sum_{w \in W: w=x y} p_{x}^{(k-1)} \quad p_{x}^{(k)}=\sum_{w \in W: w=x y} s_{y}^{(k)}
$$

- experimental results within CLEF are very similar to those obtained using the Porter's stemmers

Link analysis-based image retrieval

- given a topic q, the set of pages matching q is retrieved
- matching can be performed by any function
- the set of images contained in, or linked to by the retrieved pages is then collected
- mutual reinforcement is applied
- pages are candidate hubs
- images are candidate authorities

Link analysis-based image retrieval (cont.)

- let $\mathbf{D}=\left(d_{p i}\right)$ be the page-image adjacency matrix such that

$$
d_{p i}= \begin{cases}1 & \text { if page } p \text { contains or links to image } i \\ & \text { or to a page containing } i \\ 0 & \text { otherwise }\end{cases}
$$

- authority image score is

$$
a_{i}=\sum_{p} d_{p i} h_{p}=\sum_{p \rightarrow i} h_{p}
$$

- image hub or image container score is

$$
h_{p}=\sum_{i} d_{p i} a_{i}=\sum_{p \rightarrow i} a_{i}
$$

Experimentation within the Web track

- it is one of the tracks of the Text Retrieval Conference (TREC)
- based on the test collection paradigm (test documents, test topics, relevance judgements)
- started on 1998
- main aims:
- evaluate the effectiveness of link analysis-based methods
- experiment other tasks than ad-hoc retrieval

Tasks

- ad-hoc: given a topic, retrieve relevant documents
- homepage finding: given a query string, find the homepage of the site described by the query
- topic distillation: given a topic, retrieve relevant and authority documents
- named page finding: given a query string, find the page described by the query

Test collections

- WT2g: 2GB and 250,000-document collection, used on 1999
- WT10g: 10GB and 1.69 million document collection, used on 2000 and 2001
- .GOV: 18GB and 1.25 million document collection, used on 2002 and 2003
- less, but larger documents than WT10g
- access to PDF and images available (67GB, binaries included)

Test topics

- the title field includes a real query
- very short queries
- sometimes misspelled queries, e.g. angioplast7

Main findings

- link-based methods are not beneficial for the ad-hoc task
- it is not a necessary evidence
- conventional yet advanced weighting schemes are necessary
- link-based methods might be useful for the homepage finding task
- anchor text and URL are more effective
- page structure is effective as well
- topic distillation and named page finding did not benefit from link structure
- document structure and anchor text were more effective

Some final remarks

- link analysis-based algorithms for Web retrieval are in principle attractive
- they have shown their effectiveness in some experiments reported by single researchers, but failed within TREC
- one of the reasons is one of the assumptions, i.e. links represent authority assessment
- many links do not and their implementation does not incorporate any information about authority assessment
- automatic detection of link types/classes/labels would be a breakthrough

Some final remarks (cont.)

- these models have been successfully employed to perform other tasks (stemming, image retrieval)
- language can bias authority scores or PageRank values because links are likely to occur among pages written in the same language
- information on time is absent and young pages are less likely pointed to than older ones

Suggested bibliography

- Markov chain theory
- W. Feller. An introduction to probability theory and its applications. Wiley, volume 1, 3rd edition, 1968.

- PageRank

- S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Proceedings of the WWW-7 Conference published in Computer Networks and ISDN Systems, volume 30, number 1-7, pages 107-117, 1998.
- L. Page, S. Brin, R. Motwani and T. Winograd. The PageRank citation ranking: bringing order to the Web. Published at http:// www-db.stanford.edu/~backrub/pageranksub.ps (Visited on August 2003).
- T.H. Haveliwala. Topic-sensitive PageRank. Proceedings of the World Wide Web Conference, Honolulu, Hawaii, 2002.
- Hyper-linked Induced Topic Search
- J. Kleinberg. Authorative sources in a hyperlinked environment. Journal of the ACM, volume 46, no. 5, pages 604-632, 1999.
- S. Chakrabarti et al.. Automatic Resource Compilation by Analyzing Hyperlink Structure and Associated Text. Proceedings of the WWW-7 Conference published in Computer Networks and ISDN Systems, volume 30, number 1-7, pages 65-74, 1998.
- R. Lempel and S. Moran. SALSA: the Stochastic Approach for Link-Structure Analysis. ACM Transactions on Information Systems, volume 19, no. 2, pages 131-160, 2001.
- R. Lempel and S. Soffer. PicASHOW: Pictorial authority search by hyperlinks on the Web. ACM Transactions on Information Systems, volume 20, no. 1, pages 1-24, 2002.
- M. Bacchin, N. Ferro and M. Melucci. The Effectiveness of a Graph-based Algorithm for Stemming. Proceedings of the Int.I Conf. on Asian Digital Libraries, pages 117-128, Singapore, 2002.
- Web track
- D. Hawking. Overview of the TREC-9 Web track. Proceedings of TREC-9, 2001.
- D. Hawking and N. Craswell. Overview of the TREC-2001 Web track. Proceedings of TREC-10, 2002.
- D. Hawking and N. Craswell. Overview of the TREC-2002 Web track. Proceedings of TREC-11, 2003.
- I. Soboroff. Do TREC Web collections look like the Web? SIGIR Forum, volume 36, no 2, 2002.
- Hypertext and information retrieval
- M. Agosti and A. Smeaton (eds). Information retrieval and hypertext. Kluwer Academic Press, 1996.
- R. Botafogo et al.. Structural analysis of hypertext: Identifying hierarchies and useful metrics. ACM Transactions on Information Systems, volume 10, no. 2, pages 142-180, 1992.
- M. Melucci. An evaluation of automatically constructed hypertexts for information retrieval. Journal of Information Retrieval, volume 1, numbers 1, pages 57-80, 1999.

- Other

- L. Pretto. A theoretical analysis to link analysis algorithms. Ph. D. thesis, Department of Information Engineering, University of Padova, December 2002.
- N.L. Geller. On the citation influence methodology of Pinski and Narin. Information Processing and Management, volume 14, pages 93-95, 1978.
- P. Ingwersen. The calculation of Web impact factors. Journal of Documentation, volume 54, no. 2, pages 236-243, 1998.
- E. Garfield. Citation analysis as a tool in journal evaluation. Science, volume 178, pages 471-479, 1972.
- L. Katz. A new status index derived from sociometric analysis. Psychometrika, volume 18, pages 39-43, 1953.
- C.H. Hubbell. An input-ouput approach to clique identification. Sociometry, volume 28, pages 377-399, 1965.

