Web retrieval: Link analysis for page ranking

Massimo Melucci massimo.melucci@unipd.it

"Information Management Systems" Research Group Department of Information Engineering University of Padova, Italy

European Summer School on Information Retrieval 3rd September 2003, Aussois, France

```
Massimo Melucci
```

U. of Padova, Italy

ESSIR 2003

Web retrieval

3 Sept. 2003

1

Authority and relevance of Web pages

- the quality of conventional IR system document collection is homogeneous
- the Web is uncontrolled and quality is highly heterogeneous
- one aspect of quality is authority
- relevance is then crossed with authority
- however information about authority is not available
- directories and categories might be a means

The role of links to measure authority

- links might supply information about page authority
- if the author of page A thinks that page B is important, relevant or more generally related, he is likely to insert a link from A to B
- two assumptions
 - a link is likely to express authority of the target page
 - the more the links, the greater the authority

Massimo Melucci

U. of Padova, Italy

Note

The role of links to measure authority

- the use of links to measure authority implies that the latter is conferred to a page by another page
- this is not necessary
- one might infer authority on the basis of "stand-alone" properties, e.g. typographical features or layout
- for example, the electronic version of a journal paper would be more authoritative than a "casual" HTML page

3

Care when using links to measure authority

- it is uncertain that a link is likely to express the authority of the target page
 - a link might not point to an authority
 - a link might point to a non-authority
 - a page might be pointed-to w.r.t. one or more subjects
- the number of in-links might not be a measure of authority
 - a popular page is directly pointed to by many links
 - authoritative pages might be less pointed-to
- link analysis based methods might let authorities emerge because deal with large numbers

```
Massimo Melucci
```

U. of Padova, Italy

Note

4-1

4

Care when using links to measure authority

- automatically generated links rarely point to authoritative pages
- *if they did, there would exist an automatic method to detect authorities*
- advertisement links are very often pointing to non-authorities
- the methods being illustrated in this lecture are unable to let young authorities emerge – they are little pointed-to by other pages

Two link analysis approaches for Web page ranking

- Markov chains
 - model navigation
 - authorities link to authorities
 - rank by the probability that the page is reached
 - applied at indexing time
- mutual reinforcement relationship
 - model *authoring*
 - hubs link to authorities
 - rank by the degree to which the page is pointed-to by hubs that point to other authorities
 - applied at retrieval time

Massimo Melucci	U. of Padova, Italy	5

ESSIR 2003

Web retrieval

3 Sept. 2003

Related work

- bibliometrics and the measures of impact factors of scientific "units" (journals, papers, etc.)
- social networks and the measures of standing and social influence
- hypertext information retrieval
- hypertext structure analysis

Markov chains

- a set of states and a set of transitions between states
- p_{ij} is the transition probability that state j is reached from i
- depicted as a weighted and directed graph, where nodes are states and edge weights are probabilities of transition

the sequence of states (1,3,1,2) has probability $p_1p_{13}p_{31}p_{12} = \frac{1}{3}\frac{1}{2}1\frac{1}{2} = \frac{1}{12}$

Massimo Melucci

Note

U. of Padova, Italy

7-1

7

Markov chains

- a Markov chain is defined as follows
- S is a discrete and finite state space $\{1, 2, \dots, m\}$ (but see below)
- the initial probability of state i is p_i , such that $\sum_i p_i = 1$
- each page has at least one out-link, i.e. there are not "sink" states
- the probability of transition from i to j is p_{ij} , given i
- $\{p_{i1}, \ldots p_{im}\}$ is a probability distribution

$$p_{ij} \ge 0$$
 $\sum_{j} p_{ij} = 1$

• the probability of the sequence of states $i_0, i_1, i_2, \ldots, i_{n-1}, i_n$ is defined by $p_{i_0}p_{i_0i_1}p_{i_1i_2}\cdots p_{i_{n-1}i_n}$

Markov chains

- we are considering time homogeneous or invariant Markov chains, which are a special case of Markov chains
- the transition probabilities of the more general case are defined as

 $p_{ij}(t) = \Pr(j \text{ is reached at time } t \mid i \text{ is reached at time } t-1)$

- the invariant Markov chains have the property that their transition probabilities are independent of time t
- Markov chains are a special case of stochastic processes whose transition probabilities depend on states that are reached before the previous one

Note

7-3

Stochastic processes

- S is the discrete state space and T is the discrete parameter space (in general, S or T might be continuous)
- X_t is a random variable depending on $t \in T$ and taking values in S
- $(t_0, t_1, ..., t_n, t)$ is finite or countably infinite and $t_i < t_{i+1}, t_n < t$
- the stochastic process $\{X_t, t \in T\}$ has probability function

 $\Pr(X_t = x \mid X_{t_n} = x_n, X_{t_{n-1}} = x_{n-1}, \dots, X_{t_0} = x_0)$

• with Markov chains

$$p_{x_n,x}(t) = \Pr(X_t = x \mid X_{t_n} = x_n)$$

• with invariant Markov chains

 $p_{x_n,x} = \Pr(X_t = x \mid X_{t_n} = x_n) = \Pr(X_{t_1} = x \mid X_{t_0} = x_n)$

n-step transition probability

Massimo Melucci

U. of Padova, Italy

8

ESSIR 2003

Web retrieval

3 Sept. 2003

n-step transition probability

• by definition

$$p_{ij}^{(1)} = p_{ij}$$

is the one-step transition probability from $i \mbox{ to } j$

• the two-step transition probability is

$$p_{ij}^{(2)} = p_{i1}p_{1j} + p_{i2}p_{2j} + \ldots + p_{im}p_{mj} = \sum_{k} p_{ik}p_{kj}$$

• in general,

$$p_{ij}^{(n)} = \sum_{k} p_{ik}^{(n-1)} p_{kj} \qquad n = 1, 2, \dots$$

is the $n\mbox{-step}$ transition probability, where $p_{ik}^{(0)}=1$ if $i=k\mbox{,}$ 0 otherwise

Chapman-Kolmogorov equation

- for time homogeneous, discrete and finite Markov chains
- for any r such that 0 < r < n,

$$p_{ij}^{(n)} = \sum_{k \in S} p_{ik}^{(r)} p_{kj}^{(r,n)}$$
(1)

State probability

• the probability of state *i* after one step is

$$p_i^{(1)} = p_1^{(0)} p_{1i} + p_2^{(0)} p_{2i} + \ldots + p_m^{(0)} p_{mi} = \sum_k p_k^{(0)} p_{ki}$$

• in general, the probability of state i at step n is

$$p_i^{(n)} = \sum_k p_k^{(n-1)} p_{ki}$$

Massimo Melucci

ESSIR 2003

Matrix representation

$$\mathbf{P} = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad \mathbf{p}^{(0)} = \begin{bmatrix} 0.33 \\ 0.33 \\ 0.33 \end{bmatrix}$$
one-step transition initial state probability matrix probability vector

U. of Padova, Italy

n-step state probability

11

3 Sept. 2003

Web retrieval

U. of Padova, Italy

Matrix representation

$$\mathbf{P} = \begin{bmatrix} p_{11} & \dots & p_{1m} \\ \vdots & & \vdots \\ p_{m1} & \dots & p_{mm} \end{bmatrix} \quad \mathbf{p} = \begin{bmatrix} p_1 \\ \vdots \\ p_m \end{bmatrix}$$
$$\mathbf{p}^{(n)} = \mathbf{P'}\mathbf{p}^{(n-1)} = \begin{bmatrix} \sum_i p_{i1}p_i^{(n-1)} \\ \vdots \\ \sum_i p_{im}p_i^{(n-1)} \end{bmatrix}$$

ESSIR 2003

Web retrieval

3 Sept. 2003

Matrix representation of *n*-step transition probability

$$\begin{bmatrix} 0.5 & 0 & 0.5 \\ 1 & 0 & 0 \\ 0 & 0.5 & 0.5 \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{P}^2 = \mathbf{P} \qquad \mathbf{P}$$
$$\begin{bmatrix} 0.406 & 0.188 & 0.406 \\ 0.438 & 0.187 & 0.375 \\ 0.375 & 0.219 & 0.406 \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \cdots \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{P}^{10} = \mathbf{P} \cdots \mathbf{P}$$
$$10 \text{ times}$$

Note

Massimo Melucci

Matrix representation of *n*-step transition probability

$$\begin{split} \mathbf{P}^n &= \underbrace{\mathbf{P}\cdots\mathbf{P}}_{n \text{ times}} \\ &= \begin{bmatrix} p_{11}^{(n)} & \cdots & p_{1m}^{(n)} \\ \vdots & \vdots \\ p_{m1}^{(n)} & \cdots & p_{mm}^{(n)} \end{bmatrix} \end{split}$$

ESSIR 2003	

Web retrieval

3 Sept. 2003

Matrix representation of *n*-step state probability

$$\begin{bmatrix} 0.333\\ 0.167\\ 0.500 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1\\ 0.5 & 0 & 0\\ 0.5 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0.333\\ 0.333\\ 0.333 \end{bmatrix}$$
$$\mathbf{p}^{(1)} = \mathbf{P'} \qquad \mathbf{p}^{(0)}$$
$$\begin{bmatrix} 0.417\\ 0.166\\ 0.417 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1\\ 0.5 & 0 & 0\\ 0.5 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0.333\\ 0.250\\ 0.417 \end{bmatrix}$$
$$\mathbf{p}^{(4)} = \mathbf{P'} \qquad \mathbf{p}^{(3)}$$

Transition probability and state probability at step \boldsymbol{n}

$$\begin{bmatrix} 0.417\\ 0.166\\ 0.417 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1\\ 0.5 & 0 & 0\\ 0.5 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0.333\\ 0.250\\ 0.417 \end{bmatrix}$$
$$\mathbf{p}^{(4)} = \mathbf{P}' \qquad \mathbf{p}^{(3)}$$
$$= \begin{bmatrix} 0.25 & 0.50 & 0.50\\ 0.25 & 0 & 0.25\\ 0.50 & 0.50 & 0.25 \end{bmatrix} \begin{bmatrix} 0.333\\ 0.333\\ 0.333\\ 0.333 \end{bmatrix}$$
$$= \mathbf{P}^{4'} \qquad \mathbf{p}^{(0)}$$

U. of Padova, Italy

Massimo Melucci

Note

15-1

15

Transition probability and state probability at step n

• *n*-step state probability

$$\mathbf{p}^{(n)} = \mathbf{P}' \mathbf{p}^{(n-1)}$$

• relationship with *n*-step transition probability

$$\mathbf{p}^{(n)} = \mathbf{P'}\mathbf{p}^{(n-1)}$$

= $\mathbf{P'}(\mathbf{P'}\mathbf{p}^{(n-2)})$
= $\mathbf{P'}(\mathbf{P'}\dots(\mathbf{P'}\mathbf{p}^{(0)}))$
= $\mathbf{P}^{n'}\mathbf{p}^{(0)}$

Stationarity

Note

15-3

Stationarity and matrices

• p is stationary if

$$p_j^{(n)} = p_j^{(n-1)}$$
 $n = 1, 2, \dots$ $j = 1, 2, \dots$

• matrix form

$$\mathbf{p} = \mathbf{P}'\mathbf{p}$$

where

$$\mathbf{p} = \mathbf{p}^{(n)} \qquad n = 1, 2, \dots$$

An irreducible chain

- let us consider the "solid" sub-graph with states {1,2,3}
- each state can be reached from any other state after $n \ge 0$ steps
- then every pair of states communicate between them within one chain
- the sub-chain is closed because outside states cannot be reached
- {1,2,3} is irreducible because there are not closed subchains of it

Massimo Melucci	U. of Padova, Italy	16
ESSIR 2003	Web retrieval	3 Sept. 2003

A non-irreducible chain

- some states cannot be reached from some states
- there are states that do not communicate between them within the chain
- the chain is not irreducible because contains two closed subchains
- which are irreducible

Irreducibility

- state j is accessible from state i if j can be reached from i in a finite number of steps
- a chain is closed if no state outside is accessible from any state inside it
- states i and j are said to communicate if they are accessible to each other
- communication is an equivalence relationship and S can be partitioned into equivalence classes such that states belonging to different equivalence classes do not communicate with each other
- if there is one equivalence class, the chain is irreducible

Persistency and transiency

- 4,5 are transient eventual return is uncertain
- 1,2,3 are persistent eventual return is certain

Persistency and transiency

- a state i is persistent if and only if, starting from state i, eventual return of the chain to i is certain
- otherwise *i* is transient
- if a state *i* is an element of a equivalence class and *i* is persistent (transient), then all the other states of the same class are persistent (transient)

Periodicity

• another example is given by

	0	0.5	0.5
$\mathbf{P} =$	1	0	0
	1	0	0

- $p_{ii}^{(n)}=0$ if n is odd and $p_{ii}^{(n)}>0$ if n is even, then state i is periodic and period is two
- state i has period is three if $p_{ii}^{(n)} > 0$ if n = 3k, 0 otherwise
- in general, the period of state i is the greatest common divisor of all integers $n\geq 1$ for which $p_{ii}^{(n)}>0$
- *if every state of a class has period one, then all the states are aperiodic and the class is aperiodic*
- if $p_{ij} > 0, i, j = 1, 2, ..., m$ then the chain is irreducible, persisten and aperiodic

Web retrieval

3 Sept. 2003

Limit probabilities of an irreducible, a-periodic and persistent chain

$$\mathbf{P} = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \mathbf{P}^{30} = \begin{bmatrix} 0.4 & 0.2 & 0.4 \\ 0.4 & 0.2 & 0.4 \\ 0.4 & 0.2 & 0.4 \end{bmatrix}$$
$$\begin{bmatrix} 0.4 \\ 0.2 \\ 0.4 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.4 & 0.4 \\ 0.2 & 0.2 & 0.2 \\ 0.4 & 0.4 & 0.4 \end{bmatrix} \begin{bmatrix} p_1^{(0)} \\ p_2^{(0)} \\ p_3^{(0)} \end{bmatrix}$$
$$\mathbf{p}^{(30)} = (\mathbf{P}^{30})' \qquad \mathbf{p}^{(0)}$$

Limit probabilities of two closed sub-chains

	Γ	0.5	0 5	0	0	1	n	0	30	0	30
	0	0.5	1	0	0		$p_1^{(n)}$	0.3	0.36	0.07	0.08
$\mathbf{P} =$	1	0	0	0	0		$p_2^{(n)} onumber \ p_3^{(n)}$	$\begin{array}{c c} 0.3 \\ 0.3 \end{array}$	0.18 0.36	0.07 0.06	0.04 0.08
	0	0 0	0 0	0.5	0.5		$p_4^{(n)}$	0.05	0.07	0.4	0.53
		0	0	T	Ū.	J	$p_5^{(n)}$	0.05	0.03	0.4	0.27

Massimo Melucci

U. of Padova, Italy

ESSIR 2003

Web retrieval

3 Sept. 2003

21

Limit probabilities of transient and persistent chains

	0	0.5	0.5	0	0]		[0.4	0.2	0.4	0	0
	0	0	1	0	0				0.4	0.2	0.4	0	0
$\mathbf{P} =$	1	0	0	0	0		\mathbf{P}^3	$^{0} =$	0.4	0.2	0.4	0	0
	0	0	0	0.5	0.5				0.4	0.2	0.4	0	0
	0	0.5	0	0.5	0.5				0.4	0.2	0.4	0	0
	- -	-		F					-	л г	(0)	-	
	(0.4			0.4 0	.4	0.4	0.4	0.4		$p_1^{(0)}$		
	(0.2		0	0.2 0	.2	0.2	0.2	0.2		$p_2^{(0)}$	ļ	
	(0.4	=	0	0.4 0	.4	0.4	0.4	0.4		$p_{3}^{(0)}$		
		0			0	0	0	0	0		$p_4^{(0)}$		
		0		L	0	0	0	0	0		$p_5^{(0)}$		
	р	(30)	=				$({f P}^{30})'$,			$\mathbf{p}^{(0)}$		

Limit probabilities of a periodic chain

	Γ ο	1	0	0	0]	n	0	10	20	30	40	
$\mathbf{P} =$	0 0 1	1 0 0	0 1 0	0 0 0	0 0 0	$\begin{array}{c} \hline p_1^{(n)} \\ p_2^{(n)} \\ \end{array} $	0.20 0.20	$0.29 \\ 0.31$	$0.38 \\ 0.30$	$0.32 \\ 0.38$	$0.30 \\ 0.32$	
	0 0	$0 \\ 0.5$	0 0	0.5 0.5	$\begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$	$p_{3}^{(n)} \ p_{4}^{(n)} \ p_{5}^{(n)}$	0.20 0.20 0.20	0.37 0.02 0.01	0.32 0.00 0.00	0.30 0.00 0.00	0.38 0.00 0.00	

Massimo Melucci

U. of Padova, Italy

23

Note

Limit transition probabilities of an irreducible chain

\mathbf{P}^{1}	1	2	3	\mathbf{P}^5	5	1	2	
1	0	0.50	0.50	1		0.50	0.12	
2	0	0	1.00	2	2	0.50	0.25	
3	1.00	0	0	3	;	0.25	0.25	
\mathbf{P}^{10}	1	2	3	\mathbf{P}^3	30	1	2	
$\frac{\mathbf{P}^{10}}{1}$	1 0.41	2 0.19	3	$ \frac{\mathbf{P}^3}{1}$	30	1 0.40	2	
$\frac{\mathbf{P}^{10}}{1}$	$ \begin{array}{c} 1 \\ 0.41 \\ 0.44 \end{array} $	2 0.19 0.19	$3 \\ 0.41 \\ 0.37$	$-\frac{\mathbf{P}^3}{1}$	30	1 0.40 0.40	2 0.20 0.20	

Note

Limit transition probabilities of an non-irreducible chain

\mathbf{P}^1	1	2	3	4	5	\mathbf{P}^5	1	2	3	4	5
1	0	0.50	0.50	0	0	1	0.37	0.25	0.38	0	0
2	0	0	1.00	0	0	2	0.25	0.25	0.50	0	0
3	1.00	0	0	0	0	3	0.50	0.12	0.38	0	0
4	0	0	0	0.50	0.50	4	0	0	0	0.67	0.33
5	0	0	0	1	0	5	0	0	0	0.66	0.34
	,						·				
\mathbf{P}^{10}	1	2	3	4	5	\mathbf{P}^{30}	1	2	3	4	5
$\frac{\mathbf{P}^{10}}{1}$	1 0.41	2 0.20	3 0.39	4 0	5 0	$- \frac{\mathbf{P}^{30}}{1}$	1 0.40	2 0.20	3	4	$\frac{5}{0}$
$\frac{\mathbf{P}^{10}}{1}$	$\begin{array}{c}1\\0.41\\0.37\end{array}$	$\begin{array}{r} 2\\ 0.20\\ 0.22 \end{array}$	$\frac{3}{0.39}$ 0.41	4 0 0	5 0 0	$\begin{array}{c} \mathbf{P}^{30} \\ \hline 1 \\ 2 \end{array}$	$ \begin{array}{c c} 1 \\ 0.40 \\ 0.40 \end{array} $	$\begin{array}{r} 2\\ 0.20\\ 0.20\end{array}$	$\begin{array}{r} 3\\ 0.40\\ 0.40\end{array}$	4 0 0	
$\begin{array}{c} \mathbf{P}^{10} \\ \hline 1 \\ 2 \\ 3 \end{array}$	$ \begin{array}{c c} 1 \\ 0.41 \\ 0.37 \\ 0.40 \\ \end{array} $	$\begin{array}{c} 2 \\ 0.20 \\ 0.22 \\ 0.19 \end{array}$	$\begin{array}{c} 3 \\ 0.39 \\ 0.41 \\ 0.41 \end{array}$	4 0 0 0	5 0 0 0	$\begin{array}{c} \mathbf{P}^{30} \\ \hline 1 \\ 2 \\ 3 \end{array}$	$ \begin{array}{c c} 1 \\ 0.40 \\ 0.40 \\ 0.40 \end{array} $	$\begin{array}{r} 2 \\ 0.20 \\ 0.20 \\ 0.20 \end{array}$	$\begin{array}{r} 3 \\ 0.40 \\ 0.40 \\ 0.40 \end{array}$	4 0 0 0	5 0 0 0
$\begin{array}{c} \mathbf{P}^{10} \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$	$ \begin{array}{c c} 1 \\ 0.41 \\ 0.37 \\ 0.40 \\ 0 \\ \end{array} $	$\begin{array}{c} 2 \\ 0.20 \\ 0.22 \\ 0.19 \\ 0 \end{array}$	$\begin{array}{c} 3 \\ 0.39 \\ 0.41 \\ 0.41 \\ 0 \end{array}$		$5 \\ 0 \\ 0 \\ 0 \\ 0.33$	$\begin{array}{c} \mathbf{P}^{30} \\ \hline 1 \\ 2 \\ 3 \\ 4 \end{array}$	$ \begin{array}{c c} 1 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0 \end{array} $	$\begin{array}{r} 2 \\ 0.20 \\ 0.20 \\ 0.20 \\ 0 \end{array}$	$\begin{array}{c} 3 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0 \end{array}$		$ \begin{array}{c} 5\\ 0\\ 0\\ 0\\ 0.33 \end{array} $

Limit transition	probabilities c	of another	non-irreducible
	chain		

\mathbf{P}^1	1	2	3	4	5	\mathbf{P}^5	1	2	3	4	-	5
1	0	0.50	0.50	0	0	1	0.37	0.25	0.38	0)	0
2	0	0	1.00	0	0	2	0.25	0.25	0.50	0)	0
3	1.00	0	0	0	0	3	0.50	0.12	0.38	0)	0
4	0	0	0	0.50	0.50	4	0.25	0.14	0.28	0.2	20	0.13
5	0	0.50	0	0.50	0.50	5	0.31	0.23	0.25	0.1	13	0.08
\mathbf{P}^{10}	1	2	3	4	5	\mathbf{P}^{30}	1	2	3	4	5	
1	0.41	0.20	0.39	0	0	1	0.40	0.20	0.40	0	0	-
2	0.38	0.22	0.39	0	0	2	0.40	0.20	0.40	0	0	
3	0.41	0.19	0.40	0	0	3	0.40	0.20	0.40	0	0	
4	0.39	0.19	0.37	0.07	0.04	4	0.40	0.20	0.40	0	0	
5	0.39	0.19	0.36	0.04	0.03	5	0.40	0.20	0.40	0	0	

Note

Limit transition probabilities of a periodic chain

\mathbf{P}^1	1	2	3	4	5	\mathbf{P}^5		1	2	3	4	:	5
1	0	1.00	0	0	0	1		1	0	0	0)	0
2	0	0	1.00	0	0	2		0	1	0	0)	0
3	1.00	0	0	0	0	3		0	0	1	0)	0
4	0	0	0	0.50	0.50	4		0.13	0.20	0.34	0.2	20	0.13
5	0	0.50	0	0.50	0	5		0.56	0.17	0.06	0.1	13	0.08
	<u>,</u>												
\mathbf{P}^{10}	1	2	3	4	5	\mathbf{P}^{30})	1	2	3	4	5	
1	0	0	1	0	0	1		0	1	0	0	0	-
2	1	0	0	0	0	2		0	0	1	0	0	
3	0	1	0	0	0	3		1	0	0	0	0	
4	0.24	0.42	0.22	0.07	0.04	4		0.45	0.26	0.29	0	0	
5	0.20	0.11	0.62	0.04	0.03	5		0.13	0.65	0.23	0	0	

Limit transition probabilities

• *if a chain is irreducible, persistent (all states are persistent) and aperiodic*

$$\lim_{n \to \infty} p_{ij}^{(n)} = p_j \qquad j = 1, 2, \dots$$

where $\{p_j\}$ is stationary and $p_j>0$ for every j

- if not persistent, $p_j \ge 0$
- matrix form

$$\lim_{n \to \infty} \mathbf{P}^n = \begin{bmatrix} p_1 & \dots & p_m \\ \vdots & & \vdots \\ p_1 & \dots & p_m \end{bmatrix} = \begin{bmatrix} \mathbf{p} \\ \vdots \\ \mathbf{p} \end{bmatrix} = \mathbf{p}$$

Note

23-7

Limit state probabilities

• since

$$p_j^{(n)} = \sum_{i \to j} p_j^{(n-1)} p_{ij} = \sum_{i \to j} p_j^{(0)} p_{ij}^{(n)}$$

then

$$p_j = \lim_{n \to \infty} p_j^{(n)}$$

= $\lim_{n \to \infty} \sum_{i \to j} p_j^{(0)} p_{ij}^{(n)}$
= $\sum_{i \to j} p_j^{(0)} \lim_{n \to \infty} p_{ij}^{(n)}$

Intuitive view of PageRank

- the Web "is a" Markov chain
- the PageRank of page j is the probability that the user reaches j through $i \rightarrow j$ given that he reached i
- all the links from i to j are counted once
- the PageRank of page j depends on those of the pages linking to it
- the more *j* is linked by pages with high PageRank, the higher its PageRank
- the formulation is recursive thus requiring an initial probability
- proposed by Brin and Page (1998)

Massimo Melucci	U. of Padova, Italy	24

ESSIR 2003

Web retrieval

3 Sept. 2003

PageRank and Markov chains

- the set of Web pages is the set of states
- initial probability

$$p_{j}^{(0)}$$

that the user is at page j at the beginning of navigation

• after *n* steps

$$p_j^{(n)} = \sum_{i
ightarrow j} p_j^{(n-1)} p_{ij}$$
 where $p_{ij} = rac{1}{o_i}$

• the PageRank of j is

$$\lim_{n \to \infty} p_j^{(n)}$$

PageRank and Markov chains

- S is the set of Web pages, and is finite yet very large
- the initial probability does not depend on the time at which the user starts navigation
- also the transition probabilities do not
- PageRank is then modeled by time homogeneous (invariant) chains
- the arrival at state *j* depends on the last step only and the states at which the user has arrived before are ignored this is the Markov property
- transition probability is independent of visit time
- chains are time discrete and state discrete

Web retrieval

3 Sept. 2003

Requirements for PageRank formulation

- the chain must be a Markov chain, then $p_{ij} \ge 0$ and $\sum_{i} p_{ij} = 1$, therefore $o_i > 0$ for all i
- the chain must be *a-periodic* otherwise PageRank does not converge
- the chain must be *persistent* and *irreducible*, otherwise:
 - there are more than one irreducible and persistent disjoint subchains
 - * the PageRank depends on the initial probability
 - there are transient pages and persistent pages
 - transient pages have null PageRank and are indistiguishable, while persistent pages absorb all the PageRank distribution

Decomposition of a chain

- the states of a Markov chain can be divided, in a unique manner, into disjoint sets T, C_1, C_2, \ldots such that
- T consists of all transient states
- if $i \in C_k$ then every $j \in C_k$ can be reached from i, whereas every $j \in C_h$, $h \neq k$ cannot be reached from i
- this implies that \mathcal{C}_k is irreducible and contains only persistent states

Web retrieval

3 Sept. 2003

Converging to PageRank

- a page can be reached through actual links (solid edge) with probability 1-d or other ways (dashed edge) with probability d
- other ways are URL typing, search engines, bookmarks, etc.
- a solid edge is weighted by the probability p_{ij} that $i \rightarrow j$ is followed
- a dashed edge is weighted by the probability *q_{ij}* that *j* is reached from *i* in another way
- if there were *i* such that $o_i = 0$, then d = 1

Massimo Melucci

U. of Padova, Italy

Note

28-1

28

Converging to PageRank

- from the original formulation, PageRank of page *i* is the limit probability that a random surfer is at *i* when navigating
- if links are the only means the surfer easily get into a loop (periodicity) or leaves pages for ever (transiency)
- to extend it, note that surfers exploit alternative ways of access - search engines, "back" button, URL typing box - thus every page is potentially accessible
- if surfers fall into a "sink" page, then damping to another page is mandatory this is why d = 1 for that page

Converging to PageRank (cont.)

	1	2	3	4	5		1	2	3	4	5	
1	0	0.5	0.5	0	0	1	0.2	0.2	0.2	0.2	0.2	
2	0	0	1	0	0	2	0.2	0.2	0.2	0.2	0.2	
3	1	0	0	0	0	3	0.2	0.2	0.2	0.2	0.2	
4	0	0	0	0.5	0.5	4	0.2	0.2	0.2	0.2	0.2	
5	0	0	0	1	0	5	0.2	0.2	0.2	0.2	0.2	
			Р				\mathbf{Q}	$= (q_{ij})$	$), q_{ij}$	$=\frac{1}{m}$		
				1	2	3	4	į	5			
			1	0.03	0.45	0.45	0.0	3 0.	03			
$\mathbf{T} = (1 - d)\mathbf{F}$	$-d)\mathbf{P}+d\mathbf{Q} =$		2	0.03	0.03	0.88	0.0	3 0.	0.03		wided $d = 0.1$	dod $d = 0.15$
$\mathbf{I} = (\mathbf{I} - \mathbf{u})\mathbf{I}$			3	0.88	0.03	0.03	0.0	0.03 0.03		whice $u = 0.1$.0	
			4	0.03	0.03	0.03	0.4	5 0.	45			
			5	0.03	0.03	0.03	0.8	8 0.	03			

Massimo Melucci

U. of Padova, Italy

29

ESSIR 2003

Web retrieval

3 Sept. 2003

Converging to PageRank (cont.)

Massimo Melucci

Note

U. of Padova, Italy

31-1

31

Converging to PageRank

- let d be the probability that the surfer gets page j through alternative ways of access independently of starting page (damping factor)
- 1-d is the probability that the surfer gets page j through in-links
- the transition probability is

$$t_{ij} = \begin{cases} (1-d) \ p_{ij} + d \ q_j & \text{if } o_i > 0 \\ q_j & \text{if } o_i = 0 \end{cases}$$

• state probability is defined as before

$$p_j^{(n)} = \sum_{i \to j} p_i^{(n-1)} t_{ij}$$
 $n = 1, 2, \dots$

- this redefinition leads to a irreducible, persistent and aperiodic Markov chain – PageRank exists and is unique
- for nodes without out-links, d must be 1

Γ	0.23		0.23	0.23	0.23	0.23	0.23	$\begin{bmatrix} n^{(0)} \end{bmatrix}$
	0.13		0.13	0.13	0.13	0.13	0.13	$\begin{array}{c} P_1\\ p_2^{(0)}\end{array}$
	0.24	=	0.24	0.24	0.24	0.24	0.24	$p_{3}^{(0)}$
	0.26		0.26	0.26	0.26	0.26	0.26	$p_4^{(0)}$
	0.14		0.14	0.14	0.14	0.14	0.14	$p_5^{(0)}$
	\mathbf{p}	=		$\mathbf{p}^{(0)}$				

U. of Padova, Italy

Massimo Melucci

Note

• let

$$q_j = \frac{1}{m}$$
 and $\sum_j p_{ij} = 1$

Converging to PageRank

then

$$\sum_{j \in S} q_j = 1 \qquad \sum_{j \in S} t_{ij} = 1 \qquad i = 1, 2, \dots, m$$

- moreover $t_{ij} > 0, i, j = 1, 2, ..., m$
- then the chain is irreducible, persistent and aperiodic, and a unique PageRank exists
- note that this reformulation is sufficient yet not necessary to make PageRank unique

32-1

32

Some extensions on PageRank

- 1. page-sensitive damping factor: damping factor is no longer uniform but changes according to the linked pages
- 2. topic-sensitive PageRank: damping factor is no longer uniform but changes according to the query topic
- transition probabilities might be estimated in different ways

```
Massimo Melucci
```

U. of Padova, Italy

ESSIR 2003

Web retrieval

3 Sept. 2003

33

Page-sensitive damping factor

 a more general formulation of the transition probability of the PageRank chain would be

$$t_{ij} = (1 - d_i) p_{ij} + d_i q_j$$

where the damping factor depends on page i

• the rationale is that damping is, for example, more likely if the current page is little useful

Note

Page-sensitive damping factor

• note that $\{t_{ij}\}$ is still a transition probability of a irreducible, persistent and aperiodic chain

$$t_{ij} \ge 0 \sum_{j} t_{ij} = (1 - d_i) \sum_{j} p_{ij} + d_i \sum_{j} q_j = 1 - d_i + d_i = 1$$

provided that $\sum_j p_{ij} = 1$

• an example is given by "sink pages" for which $d_i = 1$

ESSIR 2003	Web retrieval	3 Sept. 2003

Topic-sensitive PageRank

- PageRank is computed once for each given Web graph
- it is independent of the query topic
- to make PageRank topic-sensitive, a set of predefined topics is selected
- for each topic a set of relevant pages is compiled
- PageRank is computed for each topic
- for each query the most probable topic is selected
- pages are ranked by the PageRank from the selected topic and the probability that the topic describes the query

Topic-sensitive PageRank

U. of Padova, Italy

Massimo Melucci

Note

36-1

36

Topic-sensitive PageRank

- let us consider the 6-state Markov chain (t_{ij} is omitted for sake of simplicity)
- damping can occur to relevant pages only
- $q_j = \frac{1}{2}$ because there are 2 relevant pages
- to rank relevant pages, the subchain must be irreducible
- to make it irreducible, add all the pages, i.e. {3,4} being pointedto by each relevant page
- {2,3,4,5} is the unique irreducible, persistent and a-periodic subchain – PageRank is unique
- $\{1,6\}$ are transient PageRank is null

Topic-sensitive PageRank

• let I be a subset of r relevant pages and

$$q_j = rac{1}{r}$$
 if $j \in I$, $q_j = 0$ otherwise

- C is the set of states that can be reached from I
- C is an irreducible, persistent and aperiodic class
- C is unique, PageRank exists positive and is unique for C whereas the pages outside I have null PageRank
- see Page et al. (1998), Haveliwala (2002), Pretto (2002)

ESSIR 2003	Web retrieval	3 Sept. 2003

Alternative transition probability estimators

• if multiple links $i \rightarrow j$ are distinctly considered

$$p_{ij} = \frac{l_{ij}}{l_i}$$

where l_{ij} is the number of distinct links $i\to j$ out of the $l_i=\sum_j l_{ij}$ total out-links from i

• using automatic hypertext generation methods

$$p_{ij} = \frac{\cos(\mathbf{v}_i, \mathbf{v}_j)}{\sum_j \cos(\mathbf{v}_i, \mathbf{v}_j)}$$

means that p_{ij} is function of the cosine of the angle between the keyword vector representing i and the keyword vector representing j

Alternative transition probability estimators

- the first estimator is based on the assumption that the distinct links are equivalently considered
- yet there might be some links being more likely to be followed, e.g. the one whose anchor is a bold text
- the second estimator might be replaced by the more "natural"

$$p_{ij} = f(\Pr(\text{relevance} \mid i, j))$$

that means that p_{ij} is function of the probability that j is relevant to the information need represented by i

• note that transition probabilities are topic sensitive and must be either computed at retrieval time or pre-computed for predefined topics

ESSIR 2003	

Web retrieval

3 Sept. 2003

A couple of remarks on PageRank

- 1. in the seminal paper the PageRank formulation is slighly different
- given a graph, page ranking depends on the damping factor

The original PageRank

• in their seminal paper, Brin and Page wrote

$$p'_j = (1-c) + c \sum_{i \to j} p'_i p_{ij}$$

• note that

$$\sum_{j} p'_{j} = \sum_{j} [(1-c) + c \ \sum_{i \to j} p'_{i} p_{ij}] = m(1-c) + c \ \sum_{j} \sum_{i \to j} p'_{i} p_{ij} = m$$

- the question is whether this imprecision makes p^\prime different from p
- one can show that

$$p' = mp$$

thus the PageRank values change but ranking does not

Note

38-2

Dependency of ranking on the damping factor

- PageRank aims at ranking pages using links only
- the damping factor should be a parameter to make PageRank unique
- unfortunately, not only the PageRank values depend on the damping factor, but also page ranking does
- for example, the chain with transition probability matrix

0.2	0.2	0.2	0.2	0.2
1	0	0	0	0
1	0	0	0	0
0	0	0	0.5	0.5
0	0	0	0.5	0.5

ranks pages with d = 0.49 differently if d = 0.51

• see Pretto (2002)

Mutual reinforcement relationship

Massimo Melucci

Note

39-1

39

Mutual reinforcement relationship

- a popular page is directly pointed-to by many pages that do not frequently point to other pages
- an authoritative page is pointed-to by many pages, called "hub" that do frequently point to other (authoritative) pages
- authorities are pointed to by many hubs and hubs points to many authorities
- the more the page is pointed to by hubs, the more the page is authority
- the more the page point authorities, the more the page is hub

Computation of authority and page scores

 $a_4 = h_1 + h_2 + h_3$

$h_4 =$	a_5	+	a_6	+	a_7
---------	-------	---	-------	---	-------

Massimo Melucci

U. of Padova, Italy

40

ESSIR 2003

Web retrieval

3 Sept. 2003

An example of computation of authority and page scores

• after 10 steps, we have:

7i1 $\mathbf{2}$ 3 5460 0 0.010.010.010.620.79 a_i h_i 0.02 0.66 0.660.370 0 0

- note that 1 is a poor hub yet there are 3 out-links and
- that 7 is a poor authority yet there are 2 in-links

- each page i is assigned an authority score a_i and a hub score h_i
- mutual reinforcement relationship

$$a_i = \sum_{k \to i} h_k \qquad \qquad h_i = \sum_{i \to k} a_k$$

- recursivity requires an iterative algorithm
- which score do we start computation from?

ESSIR 2003	Web retrieval	3 Sept. 2003

An algorithm to measure mutual reinforcement

- each page i is assigned an authority score $a_i^{(n)}$ and a hub score $h_i^{(n)}$ at each step n

$$\begin{aligned} h_i^{(0)} &= 1 \\ a_i^{(1)} &= \sum_{k \to i} h_k^{(0)} \\ h_i^{(1)} &= \sum_{i \to k} a_k^{(1)} \\ a_i^{(2)} &= \sum_{k \to i} h_k^{(1)} \\ \vdots \end{aligned}$$

- when starting, hubs scores are set to constant values
- iteration continues until scores converge

- let $h_i^{(0)} = 1$ for all i = 1, 2, ...
- let \boldsymbol{N} be the number of iterations

$$a_i^{(n)} = \sum_{k \to i} h_k^{(n-1)}$$
 $h_i^{(n)} = \sum_{i \to k} a_k^{(n)}$ $n = 1, \dots, N$

• we will see that results change if $a_i^{(0)} = 1$ for all $i = 1, 2, \ldots$

$$h_i^{(n)} = \sum_{i \to k} a_k^{(n-1)}$$
 $a_i^{(n)} = \sum_{k \to i} h_k^{(n)}$ $n = 1, \dots, N$

Note

42-2

An algorithm to measure mutual reinforcement: normalization

$$\begin{split} h_i^{(0)} &= 1, \ i = 1, 2, \dots, N \\ \text{for } n &= 1, 2, \dots, N \\ \text{for } i &= 1, \dots, m \\ & a_i^{(n)} &= \sum_{k \to i} h_k^{(n-1)} \\ & a_i^{(n)} &= a_i^{(n)} / \sqrt{\sum_j (a_i^{(n)})^2} \\ & h_i^{(n)} &= \sum_{i \to k} a_k^{(n)} \\ & h_i^{(n)} &= h_i^{(n)} / \sqrt{\sum_j (h_i^{(n)})^2} \\ & \text{end for} \\ \text{end for} \end{split}$$

initialize hub scores at step n for each page i update authority score normalize authority score update hub score normalize hub score

Remarks on the algorithm

- the theory says that the number of iterations should be infinite
- in practice, the number of iterations must be finite yet "sufficiently" large – the answer to "how large?" depends on the instance
- two facts can be shown by a counter-example (see Pretto (2002)):
 - the algorithm is not symmetric, i.e. results change if computation starts after initializing authority scores instead of hub scores
 - results depend on the initial values given to the hub (authority) scores
- normalization changes scores but does not change page ranking

ESSIR 2003	Web retrieval	3 Sept. 2003

Hyperlink Induced Topic Search

- an application of the mutual reinforcement algorithm
- target: broad topic queries
 - examples are "search engines", "java"
 - not only relevant pages but also authorities
- objective: discriminate authorities
- main ingredients:
 - a conventional search engine
 - some parameters
 - the algorithm based on mutual reinforcement relationship
- proposed by Kleinberg (1999)

Hyperlink Induced Topic Search (HITS)

given a query q:

- 1. retrieve the root set (R_q)
- 2. expand R_q to the base set (B_q)
- 3. compute authorities and hubs in B_q
- 4. rank pages in B_q by authority or hub score

Massimo Melucci

U. of Padova, Italy

Note

44-1

44

Main steps of Hyperlink Induced Topic Search

- let q be a query
- first a search engine retrieves the root set R_q matching q and selects the t top ranked pages
 - R_q is likely to contain many relevant pages yet they do not link each other
- then the base set B_q is built after adding all the pages that point to, or are pointed to by each page in R_q
 - B_q is still to contain many relevant pages but is likely to contain others that point to, or are pointed to by each page in R_q
- the algorithm is then performed on B_q

Adjacency matrix

	1	2	3	4	5	6	7
1	0	1	1	1	0	0	0
2	0	0	0	0	1	1	0
3	0	0	0	0	1	1	0
4	0	0	0	0	0	1	0
5	0	0	0	0	0	0	1
6	0	0	0	0	0	0	1
7	0	0	0	0	0	0	0

Massimo Melucci

Note

U. of Padova, Italy

45-1

45

Adjacency matrix

- a set of Web pages can be described by a graph such that a page is a node and a link is an edge
- an matrix, called "adjacency matrix", can be associated to a graph
- the adjacency matrix is

$$\mathbf{D} = (d_{ij})$$
 such that $d_{ij} = \begin{cases} 1 & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$

where $i, j = 1, 2, \ldots, m$ and m is the number of pages

Bibliographic coupling matrix

Massimo Melucci

Note

46-1

Bibliographic coupling matrix

U. of Padova, Italy

- both pages i and k cite j if $i \rightarrow j$ and $k \rightarrow j$
- note that

$$d_{ij}d_{kj} = \left\{ egin{array}{cc} 1 & \mbox{if and only if } i
ightarrow j \ and \ k
ightarrow j \ 0 & \mbox{otherwise} \end{array}
ight.$$

• the bibliographic coupling matrix is

$$\mathbf{B} = \mathbf{D}\mathbf{D}' = (b_{ik})$$
 such that $b_{ik} = \sum_{j=1}^{m} d_{ij}d_{kj}$

- b_{ik} is the number of pages that are cited by both i and k
- if \mathbf{D} is $r \times s$, \mathbf{B} is $r \times r$

46

Co-citation matrix

Massimo Melucci

Note

U. of Padova, Italy

47-1

47

Co-citation matrix

- both pages j and k are cited by $i \text{ if } i \rightarrow j \text{ and } i \rightarrow k$
- note that

$$d_{ij}d_{ik} = \left\{ egin{array}{cc} 1 & \mbox{if and only if } i
ightarrow j \ and \ i
ightarrow k \\ 0 & \mbox{otherwise} \end{array}
ight.$$

• the co-citation matrix is

$$\mathbf{C} = \mathbf{D}'\mathbf{D} = (c_{jk})$$
 such that $c_{jk} = \sum_{i=1}^{m} d_{ij}d_{ik}$

- c_{jk} is the number of pages that cite both k and j
- if \mathbf{D} is $r \times s$, \mathbf{C} is $s \times s$

Using the coupling and co-citation matrices to describe the algorithm

- let $\mathbf{h}^{(0)}$ be the initial hub scores, $\mathbf{C} = \mathbf{D}'\mathbf{D}$, $\mathbf{B} = \mathbf{D}\mathbf{D}'$
- the scores at step *n* are

$$\mathbf{h}^{(n)} = \mathbf{B}^n \mathbf{h}^{(0)}$$

and

$$\mathbf{a}^{(n)} = \mathbf{C}^{n-1} \mathbf{D}' \mathbf{h}^{(0)}$$

where $\mathbf{a}^{(1)} = \mathbf{D}' \mathbf{h}^{(0)}$

• D might be a non-square matrix, but B and C are always square matrices

Massimo Melucci

U. of Padova, Italy

Note

48-1

48

Using the coupling and co-citation matrices to describe the algorithm

therefore

$$\mathbf{h}^{(n)} = \mathbf{B}^n \mathbf{h}^{(0)} \qquad \qquad \mathbf{a}^{(n)} = \mathbf{C}^{n-1} \mathbf{D}' \mathbf{h}^{(0)}$$

Uses and variations of the mutual reinforcement relationship

- topic-based link weighting: each link $i \rightarrow j$ is weighted with the degree to which the anchor is about the topic of j
- **statistical stemming**: the mutual reinforcement relationship is observed between stems and derivations and is applied to find the best word split
- image retrieval: links between pages and images are considered to find authority image, image hub/containers (pages pointing to/containing authority images)

Massimo Melucci	U. of Padova, Italy													49
ESSIR 2003				Web retr	ieval								3 Se	ept. 2003
		_	_			_								
	Тор	ic-	base	ed lii	nk w	<i>leigh</i>	ntii	ng						
• wit	hout weigh	ting	:											
								1	2	3	4	5	6	7
			5				1	0	1	1	1	0	0	0
		\succ		7	$\overline{)}$		2	0	0	0	0	1	1	0
(-}	6		/		3	0	0	0	0	1	1	0
							4	0	0	0	0	0	1	0
	4						5	0	0	0	0	0	0	1
							6	0	0	0	0	0	0	1
							7	0	0	0	0	0	0	0
SCO	res after 30 st	eps												
	i	1	2	3	4	5	6		7					
	a_i	0	0	0	0	0.62	0.7	9	0					
	h.	0	0.66	0.66	0.37	0	Ο		0					

3 Sept. 2003

Topic-based link weighting (cont.)

• with weighting:

								1	2	3	4	5	6	7
3)	5	\sum	\frown			1	0	1	2	1	0	0	0
	\succ			$\left(7 \right)$			2	0	0	0	0	1	1	0
)	6	5				3	0	0	0	0	1	1	0
							4	0	0	0	0	0	1	0
4	/						5	0	0	0	0	0	0	2
							6	0	0	0	0	0	0	1
							7	0	0	0	0	0	0	0
scores after 30 s	teps													
	i	1	2	3	4	5	6	7						
	a_i	0	0.41	0.82	0.41	0	0	0						
	h_i	1	0	0	0	0	0	0						

Massimo Melucci

Note

51-1

51

Topic-based link weighting

U. of Padova, Italy

- the weight matrix $\mathbf{W} = (w_{ij})$ is used instead of \mathbf{D}
- w_{ij} is the measure of the degree to which page *i* confers authority to page *j* as regards to the topic
- needs to be computed at query time
- for example $w_{ij} = 1 + f_{ij}$ where f_{ij} is the number of topic terms occurring in the windows that are around the anchors
- in this way ranking is changed

Link analysis-based stemming

- affix removal stemming words are split into prefix and suffix, a stem is a prefix, a derivation is a suffix
- the key idea is mutual reinforcement among substrings:
 - stems are frequent prefixes that are followed by derivations
 - derivations are frequent suffixes that are preceded by stems

```
Massimo Melucci
```

U. of Padova, Italy

ESSIR 2003

Web retrieval

3 Sept. 2003

52

Link analysis-based stemming

		1	2	3	4	5	6	7	8	9
	1	1	1	0	0	0	0	0	0	0]
	2	0	0	1	1	0	0	0	0	0
	3	0	0	1	1	0	0	0	0	0
	4	0	0	0	0	1	0	0	0	0
$\mathbf{D} =$	5	0	0	0	0	1	0	0	0	0
	6	0	0	0	0	0	1	1	0	0
	7	0	0	0	0	0	0	0	1	0
	8	0	0	0	0	0	0	0	1	0
	9	0	0	0	0	0	0	0	0	1
	10	0	0	0	0	0	0	0	0	1

- best authorities (derivations): "ed" (3) and "ing" (4) with score 0.71; the other scores are null
- best hubs (stems): "inform" (2) and "comput" (3) with score 0.71; the other scores are null

Massimo Melucci

Link analysis-based stemming

- let W be a set of words, X be the set of non-null prefixes and Y be the set of non-null suffixes
- a link $x \to y$ exists iff there exists $w \in W$ such that w = xy
- suffix/authority score and prefix/hub score

$$s_y^{(k)} = \sum_{w \in W: w = xy} p_x^{(k-1)} \qquad \qquad p_x^{(k)} = \sum_{w \in W: w = xy} s_y^{(k)}$$

• experimental results within CLEF are very similar to those obtained using the Porter's stemmers

ESSIR 2003	Web retrieval	3 Sept. 2003

Link analysis-based image retrieval

- given a topic q, the set of pages matching q is retrieved
 - matching can be performed by any function
- the set of images contained in, or linked to by the retrieved pages is then collected
- mutual reinforcement is applied
 - pages are candidate hubs
 - images are candidate authorities

Note

Link analysis-based image retrieval (cont.)

• let $\mathbf{D} = (d_{pi})$ be the page-image adjacency matrix such that

 $d_{pi} = \left\{ \begin{array}{ll} 1 & \text{if page } p \text{ contains or links to image } i \\ & \text{or to a page containing } i \\ 0 & \text{otherwise} \end{array} \right.$

• authority image score is

$$a_i = \sum_p d_{pi}h_p = \sum_{p \to i} h_p$$

• image hub or image container score is

$$h_p = \sum_i d_{pi} a_i = \sum_{p \to i} a_i$$

Massimo Melucci

ESSIR 2003

U. of Padova, Italy

Web retrieval

Experimentation within the Web track

- it is one of the tracks of the Text Retrieval Conference (TREC)
- based on the test collection paradigm (test documents, test topics, relevance judgements)
- started on 1998
- main aims:
 - evaluate the effectiveness of link analysis-based methods

U. of Padova, Italy

- experiment other tasks than ad-hoc retrieval

56

55

3 Sept. 2003

Tasks

- ad-hoc: given a topic, retrieve relevant documents
- homepage finding: given a query string, find the homepage of the site described by the query
- topic distillation: given a topic, retrieve relevant *and* authority documents
- named page finding: given a query string, find the page described by the query

```
Massimo Melucci
```

U. of Padova, Italy

ESSIR 2003

Web retrieval

3 Sept. 2003

57

Test collections

- WT2g: 2GB and 250,000-document collection, used on 1999
- WT10g: 10GB and 1.69 million document collection, used on 2000 and 2001
- .GOV: 18GB and 1.25 million document collection, used on 2002 and 2003
 - less, but larger documents than WT10g
 - access to PDF and images available (67GB, binaries included)

Test topics

- the title field includes a real query
- very short queries
- sometimes misspelled queries, e.g. angioplast7

Massimo Melucci

U. of Padova, Italy

ESSIR 2003

Web retrieval

3 Sept. 2003

59

Main findings

- link-based methods are not beneficial for the ad-hoc task
 - it is not a necessary evidence
 - conventional yet advanced weighting schemes are necessary
- link-based methods might be useful for the homepage finding task
 - anchor text and URL are more effective
 - page structure is effective as well
- topic distillation and named page finding did not benefit from link structure
 - document structure and anchor text were more effective

Some final remarks

- link analysis-based algorithms for Web retrieval are in principle attractive
- they have shown their effectiveness in some experiments reported by single researchers, but failed within TREC
- one of the reasons is one of the assumptions, i.e. links represent authority assessment
- many links do not and their implementation does not incorporate any information about authority assessment
- automatic detection of link types/classes/labels would be a breakthrough

```
Massimo Melucci
```

U. of Padova, Italy

ESSIR 2003

Web retrieval

3 Sept. 2003

Some final remarks (cont.)

- these models have been successfully employed to perform other tasks (stemming, image retrieval)
- language can bias authority scores or PageRank values because links are likely to occur among pages written in the same language
- information on time is absent and young pages are less likely pointed to than older ones

Suggested bibliography

- Markov chain theory
 - W. Feller. An introduction to probability theory and its applications. Wiley, volume 1, 3rd edition, 1968.
- PageRank
 - S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. *Proceedings of the WWW-7 Conference* published in *Computer Networks and ISDN Systems*, volume 30, number 1–7, pages 107–117, 1998.
 - L. Page, S. Brin, R. Motwani and T. Winograd. The PageRank citation ranking: bringing order to the Web. Published at http://www-db.stanford.edu/~backrub/pageranksub.ps (Visited on August 2003).
 - T.H. Haveliwala. Topic-sensitive PageRank. *Proceedings of the World Wide Web Conference*, Honolulu, Hawaii, 2002.

• Hyper-linked Induced Topic Search

- J. Kleinberg. Authorative sources in a hyperlinked environment. *Journal of the ACM*, volume 46, no. 5, pages 604–632, 1999.
- S. Chakrabarti *et al.*. Automatic Resource Compilation by Analyzing Hyperlink Structure and Associated Text. *Proceedings of the WWW-7 Conference* published in *Computer Networks and ISDN Systems*, volume 30, number 1–7, pages 65–74, 1998.
- R. Lempel and S. Moran. SALSA: the Stochastic Approach for Link-Structure Analysis. ACM Transactions on Information Systems, volume 19, no. 2, pages 131-160, 2001.
- R. Lempel and S. Soffer. PicASHOW: Pictorial authority search by hyperlinks on the Web. ACM Transactions on Information Systems, volume 20, no. 1, pages 1-24, 2002.
- M. Bacchin, N. Ferro and M. Melucci. The Effectiveness of a Graph-based Algorithm for Stemming. *Proceedings of the Int.l Conf. on Asian Digital Libraries*, pages 117-128, Singapore, 2002.

• Web track

- D. Hawking. Overview of the TREC-9 Web track. Proceedings of TREC-9, 2001.
- D. Hawking and N. Craswell. Overview of the TREC-2001 Web track. *Proceedings of TREC-10*, 2002.
- D. Hawking and N. Craswell. Overview of the TREC-2002 Web track. *Proceedings of TREC-11*, 2003.
- I. Soboroff. Do TREC Web collections look like the Web? SIGIR Forum, volume 36, no 2, 2002.

• Hypertext and information retrieval

- M. Agosti and A. Smeaton (eds). Information retrieval and hypertext. Kluwer Academic Press, 1996.
- R. Botafogo *et al.*. Structural analysis of hypertext: Identifying hierarchies and useful metrics. *ACM Transactions on Information Systems*, volume 10, no. 2, pages 142-180, 1992.
- M. Melucci. An evaluation of automatically constructed hypertexts for information retrieval. *Journal of Information Retrieval*, volume 1, numbers 1, pages 57-80, 1999.

- Other
 - L. Pretto. A theoretical analysis to link analysis algorithms. Ph.
 D. thesis, Department of Information Engineering, University of Padova, December 2002.
 - N.L. Geller. On the citation influence methodology of Pinski and Narin. *Information Processing and Management*, volume 14, pages 93–95, 1978.
 - P. Ingwersen. The calculation of Web impact factors. *Journal of Documentation*, volume 54, no. 2, pages 236–243, 1998.
 - E. Garfield. Citation analysis as a tool in journal evaluation. *Science*, volume 178, pages 471-479, 1972.
 - L. Katz. A new status index derived from sociometric analysis. *Psychometrika*, volume 18, pages 39-43, 1953.
 - C.H. Hubbell. An input-ouput approach to clique identification. Sociometry, volume 28, pages 377-399, 1965.