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Chapter 1

INTRODUCTION

Klatzky and Lederman [1] give many evidences that in adults, haptic percep-
tion properties are achieved by the execution of specific Exploratory Procedures
”EPs”. An ”EP” is a stereotyped movement pattern which is dictated by the
object properties which the haptic system chooses to process, both perceptu-
ally and cognitively. Klatzky and Lederman [1] described six basic Exploratory
Properties. Lateral motion is an EP aimed at perceiving the texture of an ob-
ject. It is achieved by rubbing the fingers across a surface. Pressure is an EP
associated with the hardness of an object. By pressing down on an object, we
gain information about object hardness. This pressure is a force applied on the
object while the object is stabilized. Static contact is an EP associated with
object temperature. It corresponds to a contact in one spot by a large skin sur-
face without effort to mold to contours. Unsupported holding, which is holding
an object away from a support, is an EP associated with object weight. Enclo-
sure is defined as wrapping the hand around an object and provides information
about its global shape and volume. Contour following is an EP defined as mov-
ing the fingers over the perimeter of an object and provides information about
the exact shape of an object. The identification of these exploratory procedures
is necessary to design robots but also, for human beings, to interact with ma-
chine. Vision based hand gesture recognition methods are generally categorized
in two groups: feature based [2] and appearance based methods [3]. In feature
based methods, initially, we need to extract model or features from images. In
appearance based methods, images can be used directly for hand gesture recog-
nition. Several methods have used motion history images as temporal templates
for gesture recognition [4]. Appropriate features are extracted from this image
and different methods are used for classification such as Neural Network [5] and
the Hidden Markov Model [5]. The aim of the present work is to devise an au-
tomatic manual testing procedure able to extract tactile information effectively.
The system describes in this thesis, has been conceived to recognize the texture
and the hardness of an object through the video analysis of hand actions. This
work, based on the seminal description of Lederman and Klatzky [1], is aimed
to answer the following question: what are the hands doing?, what is the action
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-they are exerted- aimed at? Two objects properties have been tested: texture
and consistency. For each property, two modalities were proposed. The texture
of the object being explored could either be smooth or granular. Its consistency
could either be hard or soft. Consequently, EPs extracted by this system were:
Lateral motion: For the smooth object, lateral motion corresponds to a contin-
uous rubbing of the hand all over the object surface. For the granular object,
lateral motion corresponds to low amplitude movements of one or more fingers
scratching the surface in a left-right or up-down direction. Pressure: For the
soft object, the torque exerted on the object induces that the fingers gets closer
to some of the others. For the hard object, the torque exerted on the object did
not lead to any change in the distance between fingers. We would like to build a
system which is able to recognize the action or the behavior of the hands. four
EPs are categorized:

1. Lateral Motion for Smooth Object (LMSO)

2. Lateral Motion for Granular Object (LMGO)

3. Pressure for Soft Object (PSO)

4. Pressure for Hard Object (PHO)

2



Chapter 2

3D Interactive Object
Segmentation

In this chapter we present a technical interactive content segmentation of an
image and of a video object segmentation, an approach based on the spread of
labels using the graph cut algorithm, which is useful to separate objects from
the background in an image. In our project we are analyzing videos to recognize
hand gestures. As the first step we need to segment our videos to separate the
two hands, because a gesture can be showed by each hand and also by the two
hands together. By using this technique we succeeded to separate the hands in
the videos ”left hand and right hand”, after this segmentation we can study the
movement features for each hand alone.

2.1 Introduction

Image segmentation can be defined as the task of dividing an image into regions
that have a strong correlation with objects or areas of the real world contained
in the image which means to distinguish objects from background in images.
Typically this division is based on low-level cues such as intensity, homogeneity
or contours. Four popular approaches based on such cues are:

• Threshold techniques: they make decisions based on local pixel in-
formation and are effective when the intensity levels of the objects fall
squarely outside the range of levels in the background. Because spatial in-
formation is ignored, however, blurred region boundaries can create some
damage.

• Edge-based methods: their weakness in connecting together broken
contour lines make them, too, prone to failure in the presence of blurring.

• A region-based method: the image is partitioned into connected re-
gions by grouping neighboring pixels of similar intensity levels. Adjacent
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regions are then merged under some criterion involving perhaps homo-
geneity or sharpness of region boundaries.

• A connectivity-preserving relaxation-based segmentation method:
usually referred to as the active contour model, which was proposed re-
cently. The main idea is to start with some initial boundary shapes repre-
sented in the form of spline curves, and iteratively modify it by applying
various shrink/expansion operations according to some energy function.

The difficulty lies in formulating and including prior knowledge into the
segmentation process. How does one describe ones perception of what consti-
tutes foreground in an image through low level cues? As distinguishing between
objects and background becomes harder and requires a higher level of scene
understanding this task becomes increasingly difficult.
Here we attempt to address this issue, we wish to partition images into two
parts. Many approaches were suggested for this issue of interactive segmen-
tation; the approach taken here is based on Graph-cut [9, 11, 12] technique.
That was motivated by the fact that it is one of the most successful approaches
in image segmentation. In addition, it also allowed for a straightforward incor-
poration of prior knowledge into its formulation. A suggestion for an efficient
implementation along with some preliminary results on two different types of
images is also given.

2.2 Graph Cuts

A graph cut is the process of partitioning a graph into disjoint sets. The concept
of optimality of such cuts is usually introduced by associating energy to each cut.
Graph cut methods have been successfully applied to stereo, image restoration,
texture synthesis and image segmentation.

2.3 Min-cut/Max-flow cuts

Given a graph G = 〈V,E,W 〉, where V denotes its nodes, E its edges and W
the weighting matrix, that associates a weight to each edge in E. A cut on a
graph is a partition of V into two subsets A and B such that

A ∪B = V , and A ∩B = φ

Perhaps the simplest and best known graph cut method is the min-cut formu-
lation. The min-cut of a graph is the cut which partitions the graph G into
disjoints segments such that the sum of the weights associated with edges be-
tween the different segments is minimized.

Cmin(A,B) =
∑

u∈A,v∈B
Wuv
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2.4 The Image Seen as a Graph

Figure 2.1: Graph representing a 3-by-3 image 2D.

Basically each pixel in the image is viewed as a node in a graph, edges are
formed between nodes with weights denotes how alike two pixels are, given some
measure of similarity, as well as the distance between them. The edges for each
pixel can be formed between the pixel with all the other pixels. In attempt to
reduce the number of edges in the graph, we will predetermine neighborhood
N that describes the neighbors of each pixel and we will be interested in the
similarity ”distance” between each pixel and its neighbors, Any kind of neighbor-
hood system can be used (4, 8, · · ·). There are two additional terminal nodes:
an object terminal (a SOURCE) and a background terminal (a SINK).These
two terminal nodes do not correspond to any pixel in the image but instead
they represent respectively the object and the background. The source is con-
nected by edges to all nodes identified as object seeds and the sink is connected
to all background seeds. Edges are formed between the source and sink and
all other non-terminal nodes, where the corresponding weights are determined
using models for the object and background.

The distance di,j = f(|Ii − Ij |), where Ii and Ij are the intensities at pixels
i and j, and,

Wij = K × e
d2
ij

2σ

Then, the min-cut of the resulting graph will be the segmentation of the
image. This segmentation should be a partition such that similar pixels close
to each other will belong to the same partition. In addition, as a result of the
terminal weights, pixels should also be segmented in such a manner so they
end up in the same partition as the terminal node corresponding to the model
(object or background) they are most similar to. We compute the edge weights
between pixels as the following: the edge weight between pixels i and j will
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Figure 2.2: Example segmentation of a very simple 3-by-3 image. Edge thickness
corresponds to the associated edge weight. (Image courtesy of Yuri Boykov.)

denoted as W I
ij , and the terminal weights (source and sink) between pixel i and

j, the source WS
i and sink WT

i are given by:

W I
ij = K × e−

‖w(i)−w(j)‖2
2σ

WS
i = p(w(i)|i∈s)

p(w(i)|i∈s)+p(w(i)|i∈t)

WT
i = p(w(i)|i∈t)

p(w(i)|i∈s)+p(w(i)|i∈t)

where r(i; j) is denoted to the distance between pixel i and j, K is constant
and σ is tuning parameters weighing the importance of the different features.
Hence, W I

ij ,j contains the inter-pixel similarity, that ensures that the segmenta-
tion more coherent. WS

i and WT
i describe how likely a pixel is to be background

and foreground respectively.

2.5 3D Graph

In a video we construct a 3D graph that is obtained from a series of images
that describe the video. Each node from the graph is connected to 26 (pixels)
neighbors, that means it has 26 edges with weights calculated as described in
the 2D graph. We applied the same algorithm as above with some changes such
as,

Neighbors=26
Video depth was included
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2.6 Implementation

We will detail the new algorithm of Boykov-Kolomogrov[Boykov-al, 2004], which
was taken in this thesis as interactive segmentation approach. This algorithm
belongs to all the algorithms based on path augmentation, with the construction
of two research trees (one from the source and the other from the sink). The
two search trees are noted as the consecutive S-tree and T-tree. In the S-tree,
the edges of each node parent to its children are not saturated, whereas in the
T-tree the edges of the children nodes to their parents are saturated. A node
which does not belong to one of these two trees, is called a free node. The
internal nodes of a tree are passive nodes; and nodes of the borders are active
nodes. The role of the active node is to augment the tree to acquire new children
from all the free nodes. When the active node detects a neighbor node from the
second tree, it sends a found path augment to the next step. This algorithm
repeatedly runs through three steps:

• Step Growth: S-tree and T-tree are growing up to find an augmented
path.

• Step Augmentation: the found path is augmented.

• Step Adoption: S-tree and T-tree are restored.

The first step augments one tree (from the two) from a set of active nodes found
from the previous iteration. The initial stat which begins with root node is (S)
or (T), during this step the active nodes explore their unsaturated neighborhood
edges and acquire a new free child. This step ends when an active node faces
another active node of the tree opposite to describe a root path found.

Tree(p) =

 S if p ∈ S
T if p ∈ T
0 if p is free

Parent(p) represents the parent node of p, Parent(free p)=0. The notation
tree cap(p → q) describes the residual capacity of the edge(p,q) if Tree(p)=S,
otherwise it describes the edge(q,p) if tree(p)=T.

Function Growth:
while A 6= φ do

Chose an active node p ∈ A
for Pq ∈ N //Neighbors of p do

if tree cap(p→ q > 0) then
if (Tree(q) = φ) then
Tree(q) = Tree(p)
Parent(q)← q
A← A ∪ q //add q as an active node

end if
else

if (Tree(p) 6= Tree(q)) then
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return (path = path(s→ t))
end if

end if
end for
A← {A− {p}}

end while
return (path = φ)
The path p found at the step of growth, must be augmented in the next step

of The augmentation with the amount df of the possible flow. Some edges (at
least one) from the path p must become saturated. The nodes which correspond
to the saturated edges from the same tree, are considered as orphan nodes, this
can divide the tree into S and T , which are the roots of two trees as orphan
nodes from the roots of the other trees.

Function Augmentation:
Find df in the augmented path
Modify the residual graph by pushing df on path
for edge(p, q) ∈ P which becomes saturated do

if (Tree(p) = Tree(q) = S) then
Parent(q)← φ
O ← {O ∪ q}

end if
if (Tree(p) = Tree(q) = T ) then
Parent(p)← φ
O ← {O ∪ p}

end if
end for
The goal of the third step is to restore a single tree root with two raciness

S and T, then to find for each orphan a parent in the neighborhood. A parent
must belong to the same S or T as the orphan node; also it must be connected
to any saturated edge. If there is no parent which satisfies these conditions, the
orphan node becomes a free node and its children become orphans. This step
ends when all the orphan nodes become empty.

Function Adoption
while O 6= φ do

Chose un orphan p ∈ O
O ← O − {p}
Process p

end while
The function process p seeks a valid parent (in the same tree), where the

edge between them is unsaturated. Note that after the adoption, the state of
p (passive or active) remains unchangeable. If the orphan node p did not find
any valid parent, the process p must execute the following pseudo code:

Process P
for p, q ∈ N do

if Tree(p) = Tree(q) then
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if tree cap(q → p) > 0 then
A← A ∪ {q}

end if
if Parent(q) = p then
O ← O ∪ {q}
Parent(q)← φ

end if
end if

end for
Tree(p)← φ
A← A ∪ {p}

2.7 Segmentation results

First, we applied the Graph-cut algorithm on a 2D images. Results were good
as 2D segmentation of the objects in these images, figures (2.3 and 2.4) show
results of two images with different σ and λ.

Figure 2.3: 2D image example 1, from left to right, object, back-
ground, segmentation(σ = 20, λ = 0.1), segmentation(σ = 20, λ = 0.1),
segmentation(σ = 20, λ = 0.1), segmentation(σ = 20, λ = 0.1)

Then, it gave quite good results when we applied it on the videos contain
two hands. The difficulties of separation the two hands are when the hands
are moving on over the other hand, that means when we the two hands are
connected in the video. Here it is obvious to select carefully the points where
the algorithm can extract well the hand.
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Figure 2.4: 2D image example 2, from left to right, object, back-
ground, segmentation(σ = 20, λ = 0.1), segmentation(σ = 20, λ = 0.1),
segmentation(σ = 20, λ = 0.1), segmentation(σ = 20, λ = 0.1)

Figure 2.5: 2D image example 3, from left to right, object, background, seg-
mentation result

Figure 2.6: Video frames contain two hands

10



Figure 2.7: Right-hand extraction

Figure 2.8: Left-hand extraction
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Chapter 3

Motion Transformation and
Descriptors

In this chapter we will show some known visual motion transformations. The
visual motion Descriptor is one of the important features of objects in the video
analysis, it gives information about the moving objects in a video, we are inter-
ested in this objects.

Figure 3.1: Example of a Pressure for Hard Object gesture video

3.1 Optical flow

Optical Flow (OF)[21] is the 2D motion field, u(x, y); v(x, y), for each point
(x, y) in an image. Optic flow algorithms measure the displacement of pixels
between frames, this displacement gives important information as feature de-
scriptor; also it considers as a good technique for 3D image segmentation ’video’,
because it retrieves the moving objects in a video. The basic assumption made
is that pixel intensities usually are very smoothly between frames. Effectively
the same pixel can be found between two frames by its intensity value. Let
I(x, y, t) be the image pixel intensity at time t; at some elapsed time δt we can
write the following image constraint equation:

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ · · ·
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Where dots represents higher order terms that usually are excluded. Sup-
posing an object is at position (x, y) at time t and at time t+ ∆t has moved in
space by (∆x,∆y). Assume that intensity level does not change over time we
can write the equation as :

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t)

And therefore,
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ · · ·

which is called the optical flow equation (OFE) and conventionally written as:

Ixu+ Iyv + It = 0

where Ix, Iy and It are spatial and temporal derivatives of intensities which
can be computed for every frame. Also u = dx

dt
, v = dy

dt
. This calls the optical

flow equation and forms the basis of a large number of the first order algo-
rithms(where the small motion assumption is valid). We will show here one
algorithm, namely the ”Horn and Schunk algorithm” based on the optical flow.

Figure 3.2: Result of applying the Horn and Schunk algorithm on the Pres-
sure for Hard Object example above, with different block size(1,3),lambda=0.1,
neighbors=8.

3.1.1 Horn and Schunk algorithm

The equation above gives only one equation for two variables (or if there are N
pixels in the image, it gives N equations for 2N variables) and hence requires
additional constraints to make it well-posed. Horn and Schunk [21] proposed
to use the smoothness constraint, i.e. nearby points on an object move with
similar x and y velocities, or that ‖∇u‖2, ‖∇v‖2 is small. Thus they proposed
to find u, v to minimize the following energy functional

E(u, v) =
∫

Ω

[(Ixu+ Tyv + Tt)2 + λ(u2
x + u2

y + v2
x + v2

y)]dxdy

13



Where λ controls the weight given to the smoothness constraint and Ω denotes
the image domain. We assume that u and v are known (zero) at the image
boundaries. E is functional now, since E is a function of u, v and their deriva-
tives. We use calculus of variations to perform the minimization, defining the
Lagrangian as:

L(u(x, y), v(x, y)) = [(Ixu+ Tyv + Tt)2 + λ(u2
x + u2

y + v2
x + v2

y)]dxdy

and using Calculus of Variations, we get:

∇uE =
∂L

∂u
− ∂

∂x

∂L

∂ux
− ∂

∂y

∂L

∂uy

∇uE = I2
xu+ IxIyv − IxIt − λ∇2u

∇uE = I2
yv + IxIyu− IyIt − λ∇2v

where ∇2u = uxx + uyy. A necessary condition for E to be minimized is given
by ∇uE = ∇vE = 0. This is called the Euler-Lagrange equation[reference]
and can be re-arranged to give

I2
xu+ IxIyv = λ∇2u− IxIt

I2
yv + IxIyu = λ∇2v − IyIt

To solve the above equations for discrete pixels, the Laplacian can be approxi-
mated by their discrete central approximation, ∇2u(x, y) ≈ 4(u(x, y)− u(x, y))
where u(x, y) = 1

4 (u(x− 1, y) +u(x+ 1, y) +u(x, y− 1) +u(x, y+ 1)) This gives
2N equations in 2N variables: defining α = 4λ, we get

(I2
x + α)u+ IxIyv = αu− IxIt

(I2
y + α)u+ IxIyu = αv − IyIt

This can in principle be solved directly, but will require inverting a very large,
2N × 2N , matrix. A faster method is to obtain an iterative solution using the
Gauss-Seidel method which takes advantage of the sparseness of the matrix.
Thus to summarize the algorithm:

Algorithm

1. At iteration n = 0, start with an initial guess of u, v

2. Update using:

un+1 = un − Ix Ixu
2+Iyv

2+It
α+I2x+I2y

vn+1 = vn − Ix Ixu
2+Iyv

2+It
α+I2x+I2y

3. Stop when E does not decrease much or equivalently Ixun + Iyv
n + It

is small.
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3.2 Motion History Image

Motion Energy Images (MEI) and Motion History Images (MHI) are introduced
to capture motion information in images. They encode, respectively, where mo-
tion occurred and the history of motion occurrences in the image. Pixel values
are therefore binary values (MEI) encoding motion occurrence at a pixel; (MHI)
encoding how recently motion occurred at a pixel. More formally, consider the
binary-valued function D(x; y; t), D = 1 indicating motion at time t and location
(x; y), then the MHI function is defined by:

Hτ (x, y, t) =
{
τ D(x, y, t) = 1
max((Hτ (x, y, t− 1), 0) Otherwise

Where τ is the maximum duration where a motion is stored.

Figure 3.3: Result of applying the MHI filter on the Pressure for Hard Object
example above.

3.3 Motion History Image Density per Time

MHIDT captures the motion information in images. It encodes where history of
motion occurrences, in the image. This is Done by, calculation of the differences
between each two sequent frames.
Let D(x, y, t) be a binary video, we calculate MHIDT by:

Hτ = D(x, y, t)−D(x, y, t− 1)

Where (t = 1 · · ·n) is the maximum duration where the motion is stored.

3.4 Motion History Image Density

MHID uses the same technique as MHI with one change, which is the counting
of how many times the pixel belongs to the object in a video. It takes a video as
input and returns 2D image which represents the historical information about
the video.
Here, first we binaraize the video and then apply the MHID filter, this filter fills
each pixel by a value equal to how many times this pixel is white in the video
(it belongs to the object).
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Figure 3.4: Result of applying the MHIDT filter on the Pressure for Hard Object
example above.

H(x, y) =
∑Z
z=0 V ideo(z, x, y)

Where video is binary

Then we delete all the pixels that have the value which is equal to Z
(video.Depth()); this means that these pixels were never changed, they are white
in all the frames in a video. As Final result of this filter we get an image with
maximum Z−1 labels, as it seen in figure 3.5.

if (H(x, y) = V ideo.Depth()) then
H(x, y) = 0

end if

Figure 3.5: Result of applying the MHID filter.

This filter will be used in calculating the 2D moments. We calculate the 2D
moments on the MHID images of the videos.
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Chapter 4

Visual Feature Extraction
(Shape descriptions)

In general terms, shape descriptors are a set of numbers that are found to
describe a shape in compact form. A shape descriptor should ideally be a
simplification of it’s representative region but still hold enough information so
that different shapes are discriminated. Usually it either describes the shape
boundary or the image region. In our approach we use the features based region
description. Here we discuss the feature vector extracted from our videos; there
are many ways and many feature extraction methods that can represent our
objects ”hands” in a video, such as moments or historical histogram. We tested
the Geometrical, Zernike, Legendre moments and the histogram.

4.1 Historical histogram

In some cases, possibly the most useful features of describing the digital images
is the histogram. One disadvantage of using the histogram as feature descriptor
in our work is that we are interested in the movement of the hand in the video,
a normal histogram does not take into account the movement of the objects.
To make the histogram more useful in describing the movement in the video we
apply it on the MHID image, which represent the historical motion of the hand
in the video. Then, we get N features which is equal to the number of frames
in the video, (N = V ideo.Depth() = 11). The histogram then will range in
11 color levelsN = 11, each level’s value represents the number of pixels which
have been belonging to the object in the video.

4.2 Gabore transformation

The Gabor Transformation has been found to be very useful for image analysis
and compression tasks. The Gabor elementary functions are a set of overlap-
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ping functions and not mutually orthogonal, that makes its Implementation to
be very complicated and time consuming. An important property of Gabor el-
ementary functions is their achievement of the theoretical lower bound of joint
un-certainty in the two conjoint domains, space and frequency. They achieve
the maximum possible joint resolution in the conjoint visual space and spatial
frequency domain. Some properties of the visual system, such as spatial lo-
calization, orientation selectivity and spatial frequency selectivity can also be
modeled in terms of these functions. Although, it has been shown that the Ga-
bor decomposition reduces the low-order entropy of the data. This means that
the Gabor transform has the beneficial property of decorrelation. Therefore
when the Gabor transform is used for image compression, in which the proper-
ties of the visual system can be incorporated into an image coding scheme, a
high data compression ratio may be achieved.

Figure 4.1: The Gabor wavelets.

Gabor functions act as low-level oriented edge and texture descriptors and
are sensitive to different frequencies and scale information. The Gabor process
takes as input and image and two parameters, orientation and scale. The 2D
Gabor function (g) is the product of the 2D Gaussian and the complex expo-
nential function. the general expression is given by:

gθ,λ,σ1,σ2(x, y) = Exp
{
− 1

2(x,y)M(xy)T

}
Exp

{
jπ
λ (x cos θ + y sin θ)

}
where M = diag(σ−2

1 , σ−2
2 ), θ represents the orientation, λ is the wavelength

and σ1 and σ2 represent the scale at orthogonal directions. When the Gaussian
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part is symmetric, we obtain the isotropic Gabor function:

gθ,λ,σ1,σ2(x, y) = Exp{−x
2 + y2

2σ2
}Exp{jπ

λ
(x cos θ + y sin θ)}

However, with this parametrization the Gabor function does not scale uniformly,
when σ changes. It is preferable to use γ = λ/σ instead of λ so that a change
in σ corresponds to a true scale change in the Gabor function. The Equation
will then be:

gθ,λ,σ1,σ2(x, y) = Exp
{
−x

2+y2

2σ2

}
Exp

{
jπ
γσ (x cos θ + y sin θ)

}
By selectively changing each parameter of the Gabor function, we can ’tune’
the filter to particular patterns arising in the images. Figure.4.2 shows the
illustration of the variation parameters of(γ, θ, σ) in the shape of the Gabor
function. By convolving the Gabor function with image I(x, y) we can evaluate

Figure 4.2: Examples of Gabor functions. Each sub-figure shows the real part
of Gabor function for different values of γ, θ and σ

their similarity. We define the Gabor response at point (x, y) as:

Gθ,λ,σ(x, y) = (I ∗ gθ,λ,σ)(x0, y0) =
∫
I(x, y)gθ,λ,σ(x0 − x, y0 − y)dxdy

where ∗ represents convolution. The Gabor response then can emphasize three
types of characteristics in the image: edge orientation, texture orientation and
the combination of both. We must vary the parameters σ, θ and γ in order to
emphasize different types of image characteristics. The variation of θ changes
the sensitivity to edge and texture orientations; the variation of σ will change
the scale; the variation of γ the sensitivity to high/low frequencies.

4.3 The Log-Polar transformation

Input image is generally represented as a collection of pixel points on the Carte-
sian coordinates. Here we take the origin at the the middle pixel in the width
and the height of the image. Then the Log-Polar image can be constructed by
the following transformation of the coordinates, the point (x, y) on the Cartesian
coordinates is transformed into the point (ρ =

√
(x2 + y2), θ = arctan( yx )) on

the Polar coordinates. then the point on the Polar coordinates is transformed
into the point (log(ρ), θ) on the Log-Polar coordinates by taking the logarithm
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of the scale ρ.
From the mathematical point of view the log-polar mapping can be expressed
as a transformation between the polar plane(ρ, θ) (retinal plane), the logpo-
lar plane(ξ, η) (cortical plane) and the Cartesian plane(x, y) (image plane), as
follows: {

η = q · θ
ξ = loga

ρ
ρ0

where ρ0 is the radius of the innermost circle, 1/q is the minimum angular
resolution of the log-polar layout and (ρ, θ) are the polar co-ordinates. These
are related to the conventional Cartesian reference system by:{

x = ρ cos θ
y = ρ sin θ

Figure 4.3: The Log-Polar transformation: (a) graphical illustration and (b)
example of a real image.

Fig. 2 illustrates the log-polar layout as derived from the last two equations
above. In particular, in Fig. 2a the grid on the left represents a standard Carte-
sian image mapped according to the transformation between logpolar plane and
the Cartesian plane. The plot on the right shows the corresponding log-polar
image. Fig. 2b presents a Cartesian image and its log-polar counterpart. It is
worth noting that the flower petals, that have a polar structure, are mapped
horizontally in the log-polar image. Circles, on the other hand, are mapped
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vertically. Furthermore, the stamens that lie in the center of the image of the
flower, occupy about half of the corresponding log-polar image.

Note: Although we will not apply these transformations (Gabor and Log-
Polar) in our thesis, we would like to have them derived in order to have some
standard reference in the future.

4.4 Moments

Moments are a measure of the spatial distribution of ’mass’, the shape of an
object. Objects in a binary image are represented as a set of white pixels (in
2D) and voxels (in 3D). Videos are a 2D+ t (time) image, so we can represent
it as a 3D image with Depth equal to t.

4.4.1 Moment invariants

Moment invariants[13] are important shape descriptors in computer vision.
There are two types of shape descriptors: contour-based shape descriptors and
region-based shape descriptors. Regular moment invariants are one of the most
popular and widely used contour-based shape descriptors. Here we will show
the region-based shape descriptor.

2D HU Moment invariants

Hu described a set of seven moments[13] that are rotation, scaling and trans-
lation invariant Two-dimensional moments of a digitally sampled image that
has gray function f(x, y),are given by:

Mpq =
∫ ∫

f(x, y)xpyq dxdy

p, q represent the order of the moments and f(x, y) denotes to the pixel’s value
at position(x, y). In digitalization we change the integration to summation. The
moments f(x, y) translated by an amount (a, b), are defined as,

µpq =
∫ ∫

f(x, y)(a−X)p(b− Y )q dxdy

where X = M10
M00

, Y = M01
M00

, M00 denotes the area of the object, and (X,Y )
denotes to the center of the object. Translation, rotation and scaling are repre-
sented by ϕi, where i = 1..7.
The 2D Hu feature descriptors are calculated from the videos by applying the
2D Hu invariant moments on the historical images. Seven moments are ex-
tracted as a feature vector:
ϕ1 = µ20 + µ02

ϕ2 = (µ20 + µ02)2 + 4µ2
11

ϕ3 = (µ30 − 3µ12)2 + (3µ21 − µ03)2
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ϕ4 = (µ30 + µ12)2 + (µ21 − µ03)2

ϕ5 = (µ30−3µ12)(µ30 +µ12)[(µ30 +µ12)2−3(µ21−µ03)2]+(3µ21 +µ03)[3(µ30 +
µ12)2 − (µ21 − µ03)2]
ϕ6 = (µ20 − µ02)[(µ30 + µ12)2 − (µ21 − µ03)2] + 4µ11(µ30 + µ12)(µ21 + µ03)
ϕ7 = (3µ12−µ30)(µ30 +µ12)[(µ30 +µ12)2− 3(µ21−µ03)2] + (3µ12−µ03)(µ21−
µ03)[3(µ30 + µ12)2 − (µ21 − µ03)2]

3D Geometrical Moment

It is possible to compute moment invariants of 3D point distributions which
are invariant to translation and rotation, in the same manner as 2D moment
invariance. A set of 14 moments derived by HU gives information about region-
based shape descriptor, which are rotation, scaling and translation invariant in
a 3D dimensions.
Let (x,y,t) be a binary video, that means the values of its voxels are equal to
one for the voxels belonging to the object and equal to zero for the background.
We can define the moment as:

Apqr =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

xpyqtrdxdydt

A000 represents the area of the object and (A100, A010, A001) are the center
coordinates of the object.

Mpqr =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

[
x−A100

A
1/4
200 ∗A

1/4
020

]p [
y −A010

A
1/4
200 ∗A

1/4
020

]q [
t−A001

A
1/2
200

]r
dxdydt

In discrete, the integration is changed to summation. The 3D geometrical fea-
ture descriptors are calculated from our videos by applying the 3D geometrical
moments directly on the videos. 14 Moments[15] are extracted as a feature
vector:

M3d =
{
M200,M011,M101,M110,M300,M030,M003,
M210,M201,M120,M021,M102,M012,M111

4.4.2 2D Zernike Moments

Zernike moments[13] are a class of orthogonal moments and have been shown
effective in terms of image representation. They are based on the Zernike orthog-
onal Zernike radial polynomial. These moments are effectively used in pattern
recognition since their rotational invariants can be easy constructed to an ar-
bitrary order. Although higher order moments carry more fine details of an
image, they are also susceptible for noise.
The Zernike polynomials are an orthogonal set of complex valued polynomials
and they are defined as:

Vnm(x, y) = Rnm(x, y)ej∗m∗arctan(y/x)
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where x2+y2 ≤ 1, · · · , n ≥ 0, | m ||≤ n and n− | m | is even. Radial polynomials
{R} are defined as:

Rmn(x, y) =
(n−|m|)/2∑

s=0

Sn,|m|,s(x2 + y2)(n−2s)/2

Sn,|m|,s = (−1)s
(n− s)!

s!(n+|m|
2 − s)!(n−|m|2 − s)

The complex Zernike moments of order n and repetition m are given by:

ZMImn =
n+ 1
π

∑
X

∑
Y

f(x, y)V ∗nm(x, y)

Zernike feature descriptors are calculated on our videos by applying the Zernike
moments on the historical images of the videos. Zernike moments of order eight
are extracted as a feature descriptor.[16]

Zernike2D =



Z11

Z20 + Z22

Z31 + Z33

Z40 + Z42 + Z44

Z51 + Z53 + Z55

Z60 + Z62 + Z64 + Z66

Z71 + Z73 + Z75 + Z77

Z80 + Z82 + Z84 + Z86 + Z88

4.4.3 2D Legendre Moments

Legendre moments[13] are using the Legendre polynomials as kern function,
and they belong to a class of orthogonal moments. They can be used to attain
the near zero value of redundancy measure in a set of moments function so that
the moments are corresponding to independent characteristics of the image. The
two-dimensional Legendre moments of order(p, q), with image intensity function
f(x, y), are defined as:

Lpq =
(2p+ 1)(2q + 1)

4

∫
X

∫
Y

Pp(x)Pq(y)f(x, y)dxdy

where the Legendre polynomial Pp(x) of order p is given by:

Pp(x) =
p∑
k=1

(−1)
p−k

2
1
2p

(p+ k)!xk[
p−k

2

]
!
[
p+k

2

]
!k!


(p−k)=even

The recurrence relation of Legendre polynomials Pp(x) is given as:

Pp(x) =
(2p− 1)Pp−1(x)− (p− 1)Pp−2(x)

p
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where P0(x) = 1, P1(x) = x, and p > 1. Since the region of definition of
Legendre polynomials is the interior of{1,−1}, a square of NxN pixels with
intensity function f(I, j), 0 <= I, j <= (N − 1), is scaled in the region of
(−1 < x, y < 1), we can now define a new equation for Lpq:

Lpq = λpq

N−1∑
i=0

N−1∑
j=0

Pp(xi)Pq(yj)f(i, j)

where the normalization constant is:

λpq =
(2p+ 1)(2q + 1)

N2

and xi and yj denote the normalized pixel coordinates in the range of {−1, 1},
which are given by:

xi =
2!

N − 1
− 1, yj =

2!
N − 1

− 1

Legendre feature descriptors are calculated on the historical images in the same
way as Zernike. Nine Legendre moments are extracted as a feature descriptor.

Legendre2D =



L11

L20 + L22

L31 + L33

L40 + L42 + L44

L51 + L53 + L55

L60 + L62 + L64 + L66

L71 + L73 + L75 + L77

L80 + L82 + L84 + L86 + L88
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Chapter 5

Categorization and
Recognition by Diffusion
Maps

5.1 Categorization

Diffusion maps (DM)[17][18] are based on defining the Markov random walk[17]
on the graph of data. By performing the random walk for a number of time
steps, a measure for proximity of the data points is obtained. Using this mea-
sure, the so-called diffusion distance is defined. In diffusion maps the graph of
the data is constructed first. Let G = (V,E) be an undirected graph with vertex
set V = v1, · · · , vn. In the following we assume that the graph G is weighted,
we compute the weights of the edges in the graph using the Gaussian kernel
function, leading to the similarity matrix W of the graph G.

Wij = e−
dij

2σ2

Where σ indicates the variance of the Gaussian and dij denotes to the distance
between vi and vj .The degree of a vertex vi ∈ V is defined as :

Di =
n∑
i=1

wij

We define the diagonal matrix D by: Dii = D(vi, vi) = di, and Dij = 0 for
i 6= j. Defining the matrix L such as:

Lij = L(vi, vj) =

 di −Wii if vi = vj
−Wij if vi and vj are adjacents
0 otherwise
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While the Laplacian of graph G can be defined by:

= = D−1/2LD−1/2 Where D−1
ii ≡ 0 if di = 0

The transition probability of vertex vi to vertex vj in each step is: Pij = wij/di.
This defines the transition matrix P of the Markov chain.

∀vi, vj , 0 ≤ pij ≤ 1 and
∑
j∈V

pij = 1 we also can write P = D−1W

Now, we define our approach of categorization based diffusion maps in graph.

Input: graph vertices X = {x1, x2, · · · , xn} ⊂ <d , t,m, ε
Output: Clusters A1, · · · , Ak with Ai = {j|yj ∈ Ci
Construct a matrix of similarity. Let W be its weighted adjacency matrix.

Wij = e
‖xi−xj‖

2

ε

Normalization by using the Laplace-Beltrami method:

W̃ij = Wij/(
√
didj)

Calculating the transition matrix: pij = W̃ij/(
√
d̃id̃j) With di =

n−1∑
i=0

wij

Diagonalization of matrix P
Diffusion space:
Compute the first k eigenvectors v1, · · · , vk of P
Normalize the eigenvectors, dividing each row by its first element value
Y= sorting the vectors by λ1, λ2, λ3

Cluster the points (yi)i=1,···,n in Rk with the k-means algorithm into clusters
C1, · · · , Ck

The first normalization of the similarity matrix allows finding one independent
representation of the distribution. The spectral decomposition of matrix P gives
a set of Eigen values 1 = |λ0| ≥ |λ1| ≥ · · · ≥ |λn| ≥ 0, which generates a set of
Eigen vectors {ϕ0, ϕ1, · · · , ϕn}, solution of Pϕm = λtmϕm such as; we can define
a family of diffusion distances {Dt}t≥1 as:

D2
t (x, y) =

∑
j≥0

λtj(ϕj(x)− ϕj(y))2

Where t is a scale parameter controls the sensitivity of diffusion distance Dt to
ϕj . Consider the following transformation of {ψt}t≥1:
ψt : <n → <m(t)

x→ ψt(x) = (λt/20 ϕ0(x), λt/21 ϕ1(x), λt/22 ϕ2(x), · · · , λt/2m(t)ϕm(t)(x))T with ϕ0(x) =
(1, 1, · · · , 1). transformation commonly utilizes for analysis and data reduction
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in a large dimension [Stephane Lafon]. That allows to go from a large dimen-
sion space n to a homogeneous space dimension m(t) also reduce the information
such as which represent the structure properties of the graph. m(t) indicates
the number of which Eigen values are insignificants. Generally m(t) <= 3. The
diffusion distance then formed as:

D2
t (x, y) = ‖ψt(x)− ψt(y)‖.

5.2 Clustering using k-mean algorithm

Clustering can be considered the most important unsupervised learning prob-
lem; so, as every other problem of this kind, it deals with finding a structure
in a collection of unlabeled data. A loose definition of clustering could be ”the
process of organizing objects into groups whose members are similar in some
way”.
A cluster is therefore a collection of objects which are ”similar” between them
and are ”dissimilar” to the objects belonging to other clusters. The k-means
algorithm is an algorithm to cluster n objects based on attributes into k parti-
tions, k < n. The objective it tries to achieve is to minimize total intra-cluster
variance, or, the squared error function:

V =
k∑
i=1

∑
xj∈Si

(xj − µi)2

where there are k clusters Si, i = 1, 2, · · · , k, and µi is the centroid or mean
point of all the points xj ∈ Si.
The K-means algorithm will do the three steps below until convergence
Iterate until stable (no object moves group):

1. Determine the centroid coordinate.

2. Determine the distance of each object to the centroids

3. Group the object based on minimum distance

5.3 Recognition by Diffusion maps

5.3.1 Kernel Methods basics

Let Ω = {x1, x2, · · · , xn} ⊂ <d be the set of training points. The kernel is
a function k : Ω × Ω → < such that there exist a mapping ϕ : Ω → H,
where H is a Hilbert space and the following inner-product relationship holds
k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉, i, j = 1, · · · , n

Let K be the matrix containing the kernel values,Kij = k(xi, xj). If this
matrix is semi definite positive, then k is a kernel over the set Ω. A mapping sat-
isfying the dot product property can be found by the Eigen-decomposition of the
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kernel matrix K: K = U ∧UT = U ∧1/2 (U∧1/2)T Where U is the matrix whose
columns are the eigenvectors φi, i = 1, · · · , n, and ∧ = diag(λ1, λ2, · · · , λn) is
the diagonal matrix of the Eigen values in decreasing order. If we define ϕ(xi) to
be the ith row of U∧1/2, and since the Eigen vectors are non-negative (positive
semi definite matrix ), we obtain the desired mapping:

ϕ(xi) = [
√
λ1φ1(xi),

√
λ2φ2(xi), · · · ,

√
λnφn(xi)]

The kernel function can then be considered as a generalization of the dot
product, and therefore it is a measure of similarity between the input points.

5.3.2 The Nystrom extension

Let x ∈ <d be a new input point not in the training set. The Nystrom exten-
sion[19], states that the jth coordinate of the kernel mapping φ for this point
can be approximated as:

ϕj(x) =
1√
λj

n∑
i=1

k(x, xi)φj(xi) j = 1, 2, · · · , n

or in vector form:

ϕ(x) = 1√
∧U

T kx

where kx = [k(x, x1), k(x, x2), · · · , k(x, xn)], and 1√
∧ stands for (

√
∧)−1 =

diag( 1√
λ1
, · · · , 1√

λn
). In other words, the new point x is mapped as a weighted

linear combination of the corresponding maps for the training points xi. The
weights are given, modulo normalization by the Eigen values, by the kernel re-
lationship k(x, xi) representing the similarity between x and xi. Observe that
while extending the mapping, we also need to extend the kernel. This is straight-
forward when the kernel defined over Ω is simply a known function defined in
the ambient space <d. In other cases the extension of the kernel is not trivial.
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Chapter 6

Pattern Recognition

Pattern recognition is the study of how machines can observe the environment,
learn how to distinguish patterns of interest and make decisions about categories
of the pattern. In our approach the patterns are videos of one moving hand, the
movement of the hand gives information about what is the action. So we would
like to give the system the ability to recognize the action done by the hand.
Several approaches are supposed here, the recognition part of our approach
based neural networks.

6.1 Neural networks

An Artificial Neural Networks (ANNs)[22] process information in a similar way
the human brain does. The network is composed of a large number of highly in-
terconnected processing elements (neurons) working in parallel to solve a specific
problem. Neural networks learn by example as like as humans. The examples
must be selected carefully otherwise useful time is wasted or even worse the
network might be functioning incorrectly. The disadvantage is that because
the network finds out how to solve the problem by itself, its operation can be
unpredictable. An ANN is configured for a specific application, such as pat-
tern recognition or data classification, through a learning process. Learning in
biological systems involves adjustments to the synaptic connections that exist
between the neurons. This is true of ANNs as well. Neural networks, can be
used to extract patterns and detect trends that are too complex to be noticed by
either humans or other computer techniques. A trained neural network can be
thought of as an ”expert” in the category of information it has been given to an-
alyze. This expert can then be used to provide projections given new situations
of interest and answer ”what if” questions. Other advantages include:

1. Adaptive learning : An ability to learn how to do tasks based on the
data given for training or initial experience.

2. Self-Organization : An ANN can create its own organization or repre-
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sentation of the information it receives during learning time.

3. Real Time Operation : ANN computations may be carried out in par-
allel, and special hardware devices are being designed and manufactured
which take advantage of this capability.

4. Fault Tolerance via Redundant Information Coding : Partial de-
struction of a network leads to the corresponding degradation of perfor-
mance. However, some network capabilities may be retained even with
major network damage.

6.1.1 Simple neuron

An artificial neuron is a device with many inputs and one output. The neuron
has two modes of operation; the training mode and the using mode. In the
training mode, the neuron can be trained to fire (or not), for particular input
patterns. In the using mode, when a taught input pattern is detected at the
input, its associated output becomes the current output. If the input pattern
does not belong in the taught list of input patterns, the firing rule is used to
determine whether to fire or not.

6.1.2 A more complicated neuron

The previous neuron doesn’t do anything that conventional computers don’t do
already. A more sophisticated neuron is the McCulloch and Pitts model (MCP).
The difference from the previous model is that the inputs are ’weighted’; the
effect that each input has at decision making is dependent on the weight of the
particular input. The weight of an input is a number which when multiplied
with the input gives the weighted input. These weighted inputs are then added
together and if they exceed a pre-set threshold value, the neuron fires. In any
other case the neuron does not fire. In mathematical terms, the neuron fires if
and only if;

X1W1 +X2W2 + · · · > T

The addition of input weights and of the threshold makes this neuron a very
flexible and powerful one. The MCP neuron has the ability to adapt to a par-
ticular situation by changing its weights and/or threshold. Various algorithms
exist that cause the neuron to ’adapt’ ; the most used ones are the Delta rule
and the back error propagation. The former is used in feed-forward networks
and the latter in feedback networks.

6.1.3 Architecture of neural networks

Feed-forward networks

Feed-forward ANNs allow signals to travel only in one way; from input to output.
There is no feedback (loops) i.e. the output of any layer does not affect that same
layer. Feed-forward ANNs tend to be straight forward networks that associate
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inputs with outputs. They are extensively used in pattern recognition. This
type of organization is also referred to as bottom-up or top-down.

Feedback networks

Feedback networks can have signals traveling in both directions by introducing
loops in the network. Feedback networks are very powerful and can get ex-
tremely complicated. Feedback networks are dynamic; their ’state’ is changing
continuously until they reach an equilibrium point. They remain at the equi-
librium point until the input changes and a new equilibrium needs to be found.
Feedback architectures are also referred to as interactive or recurrent, although
the latter term is often used to denote feedback connections in single-layer or-
ganizations.

6.1.4 Network layers

The commonest type of artificial neural network consists of three groups, or
layers, of units: a layer of ”input” units is connected to a layer of ”hidden”
units, which is connected to a layer of ”output” units.

• The activity of the input units represents the raw information that is fed
into the network.

• The activity of each hidden unit is determined by the activities of the
input units and the weights on the connections between the input and the
hidden units.

• The behavior of the output units depends on the activity of the hidden
units and the weights between the hidden and output units.

This simple type of network is interesting because the hidden units are free
to construct their own representations of the input. The weights between the
input and hidden units determine when each hidden unit is active, and so by
modifying these weights, a hidden unit can choose what it represents. We also
distinguish single-layer and multi-layer architectures. The single-layer organi-
zation, in which all units are connected to one another, constitutes the most
general case and is of more potential computational power than hierarchically
structured multi-layer organizations. In multi-layer networks, units are often
numbered by layer, instead of following a global numbering.

6.1.5 The Learning Process

The memorization of patterns and the subsequent response of the network can
be categorized into two general paradigms:

1. Associative Mapping in which the network learns to produce a partic-
ular pattern on the set of input units whenever another particular pattern
is applied on the set of input units. The associative mapping can generally
be broken down into two mechanisms:
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• Auto-association: an input pattern is associated with itself and the
states of input and output units coincide. This is used to provide
pattern competition, ie to produce a pattern whenever a portion of
it or a distorted pattern is presented. In the second case, the network
actually stores pairs of patterns building an association between two
sets of patterns.

• Hetero-association: is related to two recall mechanisms:

(a) Nearest-neighbor recall, where the output pattern produced cor-
responds to the input pattern stored, which is closest to the
pattern presented, and

(b) Interpolative recall, where the output pattern is a similarity de-
pendent interpolation of the patterns stored corresponding to
the pattern presented. Yet another paradigm, which is a variant
associative mapping is classification, ie when there is a fixed set
of categories into which the input patterns are to be classified.

2. Regularity Detection in which units learn to respond to particular prop-
erties of the input patterns. Whereas in associative mapping the network
stores the relationships among patterns, in regularity detection the re-
sponse of each unit has a particular ’meaning ’. This type of learning
mechanism is essential for feature discovery and knowledge representa-
tion.

Every neural network processes knowledge which is contained in the values of
the connections weights. Modifying the knowledge stored in the network as
a function of experience implies a learning rule for changing the values of the
weights. Information is stored in the weight matrix W of a neural network.
Learning is the determination of the weights. Following the way learning is
performed, we can distinguish two major categories of neural networks:

1. fixed networks in which the weights cannot be changed, ie dW/dt = 0. In
such networks, the weights are fixed a priori according to the problem to
solve.

2. adaptive networks which are able to change their weights, ie dW/dt 6= 0.

All learning methods used for adaptive neural networks can be classified into
two major categories:

1. Supervised learning which incorporates an external teacher, so that each
output unit is told what its desired response to input signals ought to
be. During the learning process global information may be required.
Paradigms of supervised learning include error-correction learning, rein-
forcement learning and stochastic learning. An important issue concerning
supervised learning is the problem of error convergence, ie the minimiza-
tion of error between the desired and computed unit values. The aim is
to determine a set of weights which minimizes the error. One well-known
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method, which is common to many learning paradigms, is the least mean
square (LMS) convergence.

2. Unsupervised learning uses no external teacher and is based upon only lo-
cal information. It is also referred to as self-organization, in the sense that
it self-organizes data presented to the network and detects their emergent
collective properties. Paradigms of unsupervised learning are Hebbian
learning and competitive learning. We say that a neural network learns
off-line if the learning phase and the operation phase are distinct. A neural
network learns on-line if it learns and operates at the same time. Usually,
supervised learning is performed off-line, whereas unsupervised learning is
performed on-line.

6.1.6 Transfer Function

The behavior of an ANN (Artificial Neural Network) depends on both the
weights and the input-output function (transfer function) that is specified for
the units. This function typically falls into one of three categories:

1. Linear units, the output activity is proportional to the total weighted
output.

2. Threshold units, the output is set at one of two levels, depending on
whether the total input is greater than or less than some threshold value.

3. Sigmoid units, the output varies continuously but not linearly as the in-
put changes. Sigmoid units bear a greater resemblance to real neurons
than do linear or threshold units, but all three must be considered rough
approximations.

To make a neural network that performs some specific task, we must choose
how the units are connected to one another, and we must set the weights on the
connections appropriately. The connections determine whether it is possible for
one unit to influence another. The weights specify the strength of the influence.

6.1.7 The Back-Propagation Algorithm

In order to train a neural network to perform some task, we must adjust the
weights of each unit in such a way that the error between the desired output
and the actual output is reduced. This process requires that the neural network
compute the error derivative of the weights (EW ). In other words, it must
calculate how the error changes as each weight is increased or decreased slightly.
The back propagation algorithm is the most widely used method for determining
the EW . The back-propagation algorithm is easiest to understand if all the units
in the network are linear. The algorithm computes each EW by first computing
the EA, the rate at which the error changes as the activity level of a unit is
changed. For output units, the EA is simply the difference between the actual
and the desired output. To compute the EA for a hidden unit in the layer just
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before the output layer, we first identify all the weights between that hidden unit
and the output units to which it is connected. We then multiply those weights
by the EAs of those output units and add the products. This sum equals the
EA for the chosen hidden unit. After calculating all the EAs in the hidden layer
just before the output layer, we can compute in like fashion the EAs for other
layers, moving from layer to layer in a direction opposite to the way activities
propagate through the network. This is what gives back propagation its name.
Once the EA has been computed for a unit, it is straight forward to compute
the EW for each incoming connection of the unit. The EW is the product
of the EA and the activity through the incoming connection. Note that for
non-linear units, the back-propagation algorithm includes an extra step. Before
back-propagating, the EA must be converted into the EI, the rate at which the
error changes as the total input received by a unit is changed.

Algorithm

Units are connected one to another. Connections correspond to the edges of
the underlying directed graph. There is a real number associated with each
connection, which is called the weight of the connection. We denote by Wij

the weight of the connection from unit ui to unit uj . It is then convenient to
represent the pattern of connectivity in the network by a weight matrix W whose
elements are the weightsWij . Two types of connection are usually distinguished:
excitatory and inhibitory. A positive weight represents an excitatory connection
whereas a negative weight represents an inhibitory connection. The pattern of
connectivity characterizes the architecture of the network. A unit in the output
layer determines its activity by following a two step procedure.

1. First, it computes the total weighted input xj , using the formula:

Xj =
∑
j

yiWij

where yi is the activity level of the jth unit in the previous layer and Wij

is the weight of the connection between the ith and the jth unit.

2. Next, the unit calculates the activity yj using some function of the total
weighted input. Typically we use the sigmoid function:

yj =
1

1 + e−xi

Once the activities of all output units have been determined, the network com-
putes the error E, which is defined by the expression:

E =
1
2

∑
i

(yi − di)2

Where yj is the activity level of the jth unit in the top layer and dj is the desired
output of the jth unit. The back-propagation algorithm steps:
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1. Present a training sample to the neural network.

2. Compare the network’s output to the desired output from that sample.
Calculate the error in each output neuron.

3. For each neuron, calculate what the output should have been, and a scaling
factor, how much lower or higher the output must be adjusted to match
the desired output. This is the local error.

4. Adjust the weights of each neuron to lower the local error.

5. Assign ”blame” for the local error to neurons at the previous level, giving
greater responsibility to neurons connected by stronger weights.

6. Repeat the steps above on the neurons at the previous level, using each
one’s ”blame” as its error..

35



Chapter 7

Experiments and
Conclusion

7.1 Experiments

It is a big challenge to find out what features are the best to use in classification
of the actions and the hands. For classification, we need the input vector which
describes the features of the video. To find out the right features that represent
represent the action and or the hand in the video, We checked some feature vec-
tors descriptors like Histogram, Moments2D (Hu2D, Zernike2D, Legendre2D)
and Moments3D. Histogram and Moments2D were calculated on the MHID
image of each video, and Moments3D was calculated directly on each video. As
classifiers we used two approaches: the Diffusion Maps and the neural networks
based back-propagation. We tested the five feature descriptors above; The re-
sults were quite good with the moments3D; the other feature descriptors did not
give good results. Consequently we took the moments3D as feature descriptor
vector in our work.
We arranged our videos (after the segmentation and separation process) into

two sets, the training set and the test set. The training set contains 120 videos
which represent the four actions done by both the left and the right hand in
the following partition: 20 videos of Pressure for Soft Object, 29 videos of Lat-
eral Motion for Granular Object, 37 videos of Pressure for Hard Object and
34 videos of Lateral Motion for Smooth Object. The test set contains 34 new
videos which represent four actions as the following partition: seven videos of
PSO, seven videos of LMGO, ten videos of PHO and ten videos of LMSO, each
video we have consists of 11 frames.
Using Moments3D as feature descriptor with the two classifiers, we obtained
the following results:

1. Diffusion Maps We tried to apply the diffusion map approach on the
data-base of the videos for categorizing the 3D hand gestures. We took the
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Figure 7.1: part of our database videos after MHID transformation

features based-moments as input. Here we aimed to classify the actions;
The Diffusion Maps algorithm could not classify the actions but it classi-
fied the hands -with no previous knowledge- into two classes, left and right
hands. This result was good for us because it classifies well which hand
is presented in the video. Figure 7.2 shows results with 3D geometrical
moments. As can be seen, the database is now ordered, the left hands are
together as one class and the right hands are in a different class. Here
the calculation was applied directly on the videos, but we show the MHID
videos as result for its simplicity for the interpretation. After we apply
our algorithm of diffusion maps, the result we have seen shows that this
algorithm could greatly separate the hands into two classes left hand and
right hand. Now we aim to recognize the hands in a new videos (videos of
moving hand). To do that, we use the Nystrom extension approach as a
recognizer function. We calculate the 3d-geometrical moments, the Eigen
vectors and Eigen values for the training set (120 videos). For the new
video we calculate its feature descriptor (3d-geometrical moments), and
then the similarity with all the training set. Then we apply the Nystrom
extension approach of the following function:

ϕj(x) =
1√
λj

n∑
i=1

k(x, xi)φj(xi) j = 1, 2, · · · , n

Here we have k as the transition vector of the similarity between the
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Figure 7.2: Categorization of left and right hands videos by Diffusion Maps

new video and the training set. To reduce the calculation we take only
the first three Eigen values (λ1, λ2, λ3), and the first three Eigen vectors
(φ1, φ2, φ3). The result of the Nystrom extension algorithm is a vector of
three elements which represent the new video. We calculate the distance
between this vector and the center of the two classes, the nearest center
defines which class this hand is (left or right).
The result of the recognition of the hands in these videos was 100% . Our
approach gave right answers on all the videos we have

2. Neural Networks We built two neural networks based on the back-
propagation algorithm. The first network answers whether the hand in a
video is left or right; the second network answers what is the action or
the gesture done by the hand. Both networks were trained using matlab
neural networks tool, using the sigmoid activation function and Levenberg-
Marquardt[20] learning rule.
The two networks were trained successfully with the 3D-geometrical mo-
ments as the feature descriptor of our videos composed of all hand ges-
tures. We used the 14 geometrical moments as input for the two networks,
manually we selected the output of each example in the training set.

The first neural Network ; It contains three layers, the first layer is
the input layer and consist of 14 nodes (the moments3D); the hidden
layer contains of 30 neurons. Each neuron has a weight matrix of 14
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Figure 7.3: flow processing diagram for Categorization of left and right hands
videos by Diffusion Maps

weights, one base and one output, and it uses the sigmoid activation
function; the output layer consists of one neuron only which takes
as input the outputs of the hidden layer neurons (30) and gives as
output the result of which hand is moving in the video (left or right
hand). For the training set, manually, we selected the out put of each
video for the training process; We set (1) to the output of the right
hands and (-1) of the left hands.
The network was trained successfully on the training set. It gave
100% right answers. We presented the new examples which are in the
test set (34 videos, of which are 16 Left and 16 Right): it recognized
the hands in these videos well, 97% right answers.

The second Neural Network ; Which is more important for us, recog-
nizes the action done by the hands. This network also contains thee
layers: the first layer is the input layer and consists of 14 nodes (the
moments); the hidden layer contains of 30 neurons, each neuron has a
weight matrix of 14 weights, one base and one output, and it uses the
sigmoid activation function; the output layer consists of two neurons
which take as input the outputs of the hidden layer neurons (30) and
gives as output the result of what is the gesture or the action done
by the moving hand in a video. Here we represent the output values
as function in the following transformation:

1 1 PSO
-1 1 LMGO
1 -1 PHO
-1 -1 LMSO

The network was trained successfully on the training set. We pre-
sented the new examples which are in the test set (34 videos), it
recognized good the gestures in these videos, resulting in 82.4% right
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answers.

Figure 7.4: Flow processing diagram for neural networks L/R and action recog-
nition

The result of the test set videos for the two categories (left/right and the
four actions) is summarized respectively in the following table:

First Neural Network for L/R HAND
100% Left Hand
93.8% Right Hand

2nd Neural Network for Gesture recognition

71.4% PSO
85.7% LMGO
80% PHO
90% LMSO

Figure 7.5: Example of the two neural networks

As a final result, we took the Diffusion Maps as a good approach to answer
the question: Which hand is presented in the video? (Left or Right hand); and
the neural network to answer the question: What is the action done by this
hand in the video? (LMSO, PHO, PSO, LMGO).
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Figure 7.6: Example of the Diffusion Maps L/R recognition

7.2 Conclusion and Future work

A new approach based on Graphcut, 3D geometrical moments, neural networks
and Diffusion Maps for hand gesture recognition is presented. The proposed
framework classifies haptic properties through the video analysis of hand ac-
tions. Two objects properties have been tested: texture and consistency. For
each property, two modalities were proposed. The texture of the object being
explored could either be smooth or granular. Its consistency could either be
hard or soft. In this algorithm, after extracting efficient dynamic hand (in 3D)
by Graphcut technique and applying necessary processing on theses videos of
hand gestures, robust global features’ vectors are extracted, based on 3D geo-
metrical moments. These vectors are then used to train a neural network for
hand gesture recognition and to categorize the hands (left and right) by Diffu-
sion Maps. We tested the proposed algorithms with the collection data set. The
results showed a correct haptic gesture recognition rate of 82.4 percent using
the neural networks based back propagation. On the other hand, the results
also showed a high recognition rate of 97 percent for left/right hand recognition
using the neural networks and 100 percent with the Diffusion Maps categoriza-
tion. Furthermore, the proposed automatic approach is robust to traditional
problems of gesture extraction and recognition. The framework can be used for
interaction handicapped persons with the computer to increase their abilities.
It is a challenge to build a system which is able to recognize the gestures tracked
by the camera. There are many avenues of future work for this research, includ-
ing the recognition of the gestures from the live camera, improve the gesture
recognition system in order to reduce the recognition errors, the recognition
system should correct training data of the gesture in real time while a user per-
forms gesture, we also plan to improve the segmentation algorithm to separate
the hands in real time, and the most perspective work as future work for this
research is to build a virtual reality system which gives more interactions be-
tween human and computer. This virtual reality system must be able to imitate
the hand gestures taken by the camera. Also it will give more realization for
the user to understand well the gestures.
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Chapter 8

Extension Work, Human
Motion Action
Categorization and
Recognition Using Diffusion
Maps

8.1 Introduction

RECOGNIZING of Human Motion Actions from videos is a challenging re-
search problem in computer vision; it is a key component in many computer
vision applications, such as video surveillance, human-computer interface, video
indexing and browsing, recognition of gestures, analysis of sports events, and
dance choreography.

It is of relevance to both the scientific and industrial communities. Recent
works in the computer vision literature have proposed a number of successful
motion recognition approaches based on nonlinear manifold learning techniques.
Despite significant recent developments, general human motion recognition is
still an open problem.

In this research, we aim to categorize and recognize 10 human actions such
as: walking, bending, jumping, jumping in the same place, running, skipping,
walking a side, waving two hands, waving one hand and jacking. Then we
propose a Diffusion Maps as a learning algorithm for categorizing these ten
actions. Our learning algorithm is unsupervised method, we don’t give any
previous knowledge on our training set.
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8.2 Features

We need to extract the features of the moving body which is a binary object
in a video. We will describe three groups of extracted features, each group was
used to categorize a group of actions. As it shown in the experiments part.
First we need to compute some global terms like area, perimeter, center of
the body, global rectangle, upper rectangle (around the hands), and bottom
rectangle (around the legs).

Figure 8.1: video frames with its interesting regions ’rectangles’

8.2.1 First group

This group of features are used to categorize the two global classes: the first
class which describes five actions which needs to move all the body to be done
and changing its place like (Walking, Jumping, Running, Skipping and Walking
a Side); and the second class which contains five actions that need to move only
part of the body (mostly the hands) or to move the body in the same place like
(Bending, Jumping in the same place, Waving two hands, Waving one hand and
Jacking).
This group consists of three features.

1. Difference of Area

which are calculated on the Motion History Image of each video. This
feature describes the area of the Motion History Image of the human
body moving in the video. The area here is calculated by counting the
white pixels in the Motion History Image which describes the movement
of the body, this area is divided by the area of the body in the first frame.
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DA =
area(MHI)
area(Frame0)

2. Center variance

First we calculate the Center of each human body in each frame of the
video. Then we calculate the variance of these center points on the X and
Y axis. Center is calculated for each frame in the binary video by:

Cx =
1
A

∑
P∈object

Px and Cy =
1
A

∑
P∈object

Py

where A is the Area, The variance is calculated by:

V ariancex =
1
n

√√√√ n∑
i=1

(Cix− Cx)2

and

V ariancey =
1
n

√√√√ n∑
i=1

(Ciy − Cy)2

Where C defines the mean center

3. Distance of Action

After the calculation of the center of the object (human body) in each
frame of the video. then taking the Min and the Max centers of the object
in a video. We calculate the distance between the two centers (Min, Max)
which describes the length of the movement. We take the distance on the
X axis, because the movement in the videos is on this axis.

Distance = Cmax − Cmin

8.2.2 Second Group

This group of features describes the features for actions in ClassI. These fea-
tures have calculated on the upper rectangle (around the hands), and bottom
rectangle (around the legs). The upper rectangle here defines the place of the
hands which is always in the upper half part of the body, and the bottom rect-
angle defines the legs which is always in the third bottom part.

1. Length Difference of the global rectangle

This takes the difference between the maximum and the minimum length
(Height) of the global rectangle of the object.

Diff H = (Hmax −Hmin)/Hmin
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2. Length Variance of the global rectangle

This calculates the length of the global rectangle of the object in each
frame and calculates the variance of these lengths (Heights).

V ariance H =
1
n

√√√√ n∑
i=0

(Hi −H
2

where H defines the mean center.

3. Width Difference of the upper rectangle

This feature takes the difference between the maximum and the minimum
Width of the hands rectangle of the object (the upper rectangle).

DiffW upper = (Wuppermax −Wuppermin)/Wuppermin

4. Width Difference of the bottom rectangle

It takes the difference between the maximum and the minimum Width of
the legs rectangle of the object (the upper rectangle).

DiffW buttom = (Wbuttommax −Wbuttommin)/Wbuttommin

5. Center variance on the X axis

This feature is the same as in the first group: the variance of the center
points on the X axis. Center is calculated for each frame in the binary
video by:

Cx =
1
A

∑
P∈object

Px

The variance is calculated by:

V ariancex =
1
n

√√√√ n∑
i=1

(Cix− Cx)2

where C defines the mean center.

8.2.3 Third group

This features will be used to categorize the run, skip, jump actions in the classI.
It consists of two features which use the convex-hull of the human body in the
video.
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1. Convex Hull variance

After finding the convex-hull of the human body in each frame of the
video, We take the Area of the human body and its convex-hull in each
frame. We calculate the difference between the area of the human body
and the area of its convex hull in each frame and calculate the variance of
these differences. The variance is calculated by:

Mean =
1
N

∑
i∈N

area(convexi)− area(objecti)

where N = number of frames. The variance is calculated by:

V ariance =
1
N

√∑
i∈N

(area(convexi)− area(objecti)−Mean)2

2. Difference between Convex Hull and Object

This feature describes the difference between the area of the human body
and the area of its convex hull in each frame, and it takes the maximum
and the minimum differences. It returns as result maximum−minimum

minimum .

8.3 Experiments

We aim to categorize these ten human actions: walking, bending, jumping, jump-
ing in the same place, running, skipping, walking a side, waving two hands,
waving one hand and jacking. We used data-base of 89 videos from [23], which
are 9 videos for each action except 8 videos for the skip action. They were taken
from 9 persons. Each video contains a stable background which makes it easy to
segment and extract the moving body in a video as the object. In the next parts
we work on the binary videos where the human body is the object in each video.
It turned out to be hard to find which features are good to categorize these ten
actions, because the diffusion maps uses the distances between all the examples.
The distances are different in the same group of action videos. This leads to
the need of finding a strategy for the categorization of the ten actions. First we
categorize the ten actions as two classes: classI contains actions that need to
move all the body like (Walking, Jumping, Running, Skipping and Walking a
Side); classII contains actions that need to move only part of the body (mostly
the hands) or to move the body in the same place like (Bending, Jumping in
the same place, Waving two hands, Waving one hand and Jacking). To do this
categorization we used the three features described as the first group features
-(difference area, Distance of Action and Center variance on x axis)- as vector
descriptor extracted from the MHI transformed image of our videos. Results
showed that by using these features as input to a Diffusion Maps, it is possible
to categorize the ten actions into the two classes like we described above.

Now, after the two classes were categorized well, we applied the categoriza-
tion of a diffusion maps using 14 geometrical moments in 3d (2d+t) as features
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Figure 8.2: MHI for the 10 actions

descriptor to categorize the second class (classII) aiming to recognize what is
the action in this class. The 14 moments were calculated on the MHIDT images;
it gave good results.

There was only one mistake in all the videos in this class (45 videos of
classII), After the process of the spectral clustering we can decide what is
the action in this class by applying the recognition function using the Nystrom
extension method. We will get then λ1, λ2, λ3 as result. From the results, we
found that the actions in this group can be categorized by only λ1, as following:

λ1 Action
≤ −0.33 Bend

−0.23 < λ1 ≤ −0.1 Jump in place
−0.33 < λ1 ≤ −0.23 Wave one hand
−0.1 < λ1 ≤ 0.1 Jack

λ1 ≥ 0.1 Wave two hands

For classI actions, we tried several features the geometrical moments, shape
descriptors and 2d moments. It was difficult to categorize the actions in this
class correctly. We found that the best way to categorize these actions is by
separating again this class into some classes, for some action groups we get some
good results; For the bad results we will show later what their action is, by using
anther features. We found that using the five features (Length Difference of the
global rectangle, Length Variance of the global rectangle, Width Difference of
the upper rectangle, Center variance on the X axis, Width Difference of the
bottom rectangle), described in the features part as the second features group,
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Figure 8.3: MHI of the 10 actions after first diffusion maps categorization σ =
0.001

it is possible to categorize the five action in this class into three classes using
again the Diffusion Maps techniques ”spectral clustering” with σ = 0.005.

λ1 λ2 λ3 Action
> 0 > 0 < 0 Walk
> 0 > 0 > 0 Walk a Side
* otherwise * Run, Skip, Jump

Finally we calculated two features, described in the features section as the
third group, (variance of the (convex Hull - object), and the Difference between
convex Hull and object). To decide what the action is from the third class
we use here a new diffusion map to separate the three actions. We define the
categorization in the recognition process by λ1, λ2, σ = 0.365 as the following

λ1 λ2 Action
< 0.1 > 0 Skip
< 0.1 < 0 Jump
> 0.1 Whatever Run

Results were quite good here. In these three actions we have 26 examples of
three actions, our approach categorized and recognized well 24 videos. However,
two videos from present the skip action gave wrong answers.
Finally, our results for all the data-base videos achieved activity recognition
rates above 96.6%. This demonstrates that, without any previous learning, our
technique performs very well as human motion categorization method.

The categorization and recognition process flow:
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Figure 8.4: MHI of the five actions belonging to class II

Figure 8.5: MHI of the five actions belonging to class II, the order was done by
the first Eigen vector with σ = 0.000045

8.4 Conclusion and future works

A new approach based on Motion Descriptors, mass features, 3D geometri-
cal moments and Diffusion Maps for human motion action categorization and
recognition is presented. The proposed framework classifies haptic properties
through the video analysis of human motion actions. Ten motion action have
been tested walking, bending, jumping, jumping in the same place, running,
skipping, walking a side, waving two hands, waving one hand and jacking.
We present Binary videos, each video contains a human who is doing an activ-
ity. We calculate three mass features -(difference area, Distance of Action and
Center variance on x axis)- from the MHI image of the video to separate the
ten actions into two classes, using the Diffusion Maps. By the Kernel method
and the nystrom extension algorithm we define the two classes.
For the first class classI, five features -Length Difference of the global rectangle,
Length Variance of the global rectangle, Width Difference of the upper rectan-
gle, Center variance on the X axis, Width Difference of the bottom rectangle-
were calculated and presented as input vectors. We categorized the five actions
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Figure 8.6: MHI of the five actions belonging to class I

in this class as three groups (First: walk, Second: walk a side, third: (run, skip,
jump)). We used two more features -(variance of the (convex Hull - object), and
the Difference between convex Hull and object)- to categorize the (run, skip,
jump) actions. The all categorization processes here were done by using the
Diffusion Maps (spectral clustering) algorithm; the recognition processes were
done by using the Kernel method and Nystrom extension method.
Robust global features are extracted, based on 3D geometrical moments for the
classII actions, These vectors are then used to categorize the five actions clas-
sified as the second class (classII) by Diffusion Maps.
We tested the proposed algorithm only on our 89 videos; the results for all data-
base videos achieved activity recognition rates above 96.6%. This demonstrates
that, without any previous learning, our technique performs very well as human
motion recognition methods.

There are many avenues of future work for this part, including the recog-
nition of the human motion actions tracked by the live camera, improve the
recognition system in order to reduce the recognition errors, the recognition
system should correct training data online, we also plan to improve segmen-
tation algorithm to extract the human body in real time, also it will be very
important to do a virtual reality system which simulates the human motion
action.
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Figure 8.7: Human actions categorization process flow

Figure 8.8: Human actions recognition process flow
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