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Chapter 1

Foreward

This document presents the theoretical results of Work Part 1 of FERMI and consists of
two main parts.

In the first one, Part I, the FERMI logic for Information Retrieval is presented. The
logic, named MIRLOG, is the product of over 18 months of study conducted by the FERMI
Team at Consiglio Nazionale delle Ricerche. Its basic features come from the partial results
obtained during the first year of the Project and presented in the Deliverable D1.

Part II reports a study on user and system relevance in information retrieval, carried
out by Universite Joseph Fourier. This study places itself at a higher level of abstraction
than the retrieval model given in Part I, and addresses an aspect only marginally treated
in Part L.

Overall, the two Parts of the present document draw an ideal line of development:
from the MIRLOG-based model, providing a very rigorous framework for dealing with the
representational and inferential aspects of information retrieval, towards a more complete
model, still logic-based, but also endowed with the flexibility needed to cope with the
complex dynamics of relevance.

I would like to thank the researchers that have contributed to the work reported in
this document: Jean-Pierre Chevallet and Marie France Bruandet from Universite Joseph
Fourier and Umberto Straccia and Fabrizio Sebastiani from Consiglio Nazionale delle Ri-
cerche.

Carlo Meghini
Leader of the Work Part
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Chapter 2

Introduction

The FERMI Project is centered around the Terminological Information Retrieval Model
(Terminological Model, for short), a logic-based model that hinges on a Terminological
Logic for representing documents, information needs and the relationship between them
capturing a notion of relevance. Deliverable D1 reported a thorough investigation of a par-
ticular instance of the Terminological Model, namely the one based on the logic MIRTL.
This investigation has highlighted negative properties of MIRTL, among which the unde-
cidability of the main decision problems is the most relevant to the FERMI Project. At
the same time, two basic desiderata were identified: a closed-world assumption semantics
allowing to express the completeness of knowledge on certain individuals, and an implica-
tion relation which be closer to the notion of relevance than the one formalized by classical
logical implication.

These three aspects provide the rationale for the main choices that have led to the
definition of MIRLOG, and are illustrated in the rest of this Chapter.

2.1 From MIRTL to ALC

No efficient system can be founded on a representation scheme suffering from undecid-
ability. In the theory of computer science, undecidable formalisms are at the heart of
fundamental notions, such as that of algorithm and that of programming language. In this
respect, undecidability is a mandatory property of foundational systems, as it captures
an essential aspect of computational agents. However, when it comes to the foundation
of interactive systems, which is precisely the goal of FERMI, undecidability becomes an
embarrassing presence. In fact, the inevitable non-termination of (sound and complete)
retrieval algorithms is not only unacceptable from the user point of view, it also prevents
the designers of such algorithms to perform a precise analysis on the behaviour of proposed
solutions.

13



14 CHAPTER 2. INTRODUCTION

As a reaction to its undecidability, the concept constructors of MIRTL have been
replaced by those of the logic ALC. As a result, MIRLOGlooses number restrictions, inverse
roles and singletons, while gaining full negation (hence also disjunction).

The rationale behind the choice of ALC is that ALC is a terminological logic of the
same family as MIRTL, the AL family, that provides the typical first-order operators and
can therefore be considered as a general representative of its family. More importantly, the

basic decision problems for ALC are all decidable; in particular, testing the satisfiability
of an ALC-knowledge base is known to be PSPACE-complete.

The loss in expressivity caused by the adoption of ALC concept constructors for
MIRLOG, is mitigated by the additional features of the latter. In particular, closure asser-
tions offer the possibility of representing meta-information on individuals and can simulate,
in most interesting cases, the information on the cardinality of role fillers expressed through
number restrictions. Furthermore, assertional formulae allow to combine simple assertions
in a Boolean way, so regaining part of the expressive power of the singleton operator.

2.2 Closing individuals

The classical logical implication relation, adopted by terminological logics, reflects a way
of reasoning that is based on the open world assumption. Essentially, this means that a
knowledge base (KB) is certain only on the status of the knowledge that it possesses, either
explicitly or implicitly. What escapes its state of knowledge, is simply unknown to the KB.
For instance, from the only fact that Carlo is the only known author of the document D,
it does not follow that Francesco is not an author of D. In other words, under the open
world assumption a KB is interpreted as a partial description that may lack information
about some aspects of the modelled state of affairs.

Under certain circumstances, however, a different understanding of the contents of a
document base would be in order. Typically, when indexers build document representa-
tions, they limit themselves to the specification of the positive facts, describing what the
document is, because the specification of what the document is not usually amounts to
an overwhelming number of negative assertions. In these cases, the lack of negative in-
formation should be understood as a tacit assertion of that information, in conformance
with the principles of the closed world assumption. To stay with the previous example,
in order to obtain the desired behaviour within the framework of classical implication, an
indexer should specify that X is not an author of the document D for all persons X known
to the document base. The material impossibility of doing that produces, as a result, an
undesired behaviour of the system.

In order to solve this problem, the document representation language of the MIRLOG model
has been extended with closure assertions, that is, assertions about the completeness of
the knowledge on specified individuals. These assertions are interpreted on the basis of
a non-classical semantics for ALC, devised to this end. The extended language and its



2.3. MODELLING THE RELEVANCE OF RETRIEVAL 15

semantics are given in Chapter 3.

2.3 Modelling the relevance of retrieval

Information Retrieval (IR) is often described in terms of relevance: its task is to find all
the documents that are relevant to a given query. In logic, relevance has been the subject
of numerous and fruitful investigations, which led, among other things, to the definition of
several inference relations capturing different aspects of this notion. One inference relation
in particular, that of tautological entailment, has been widely recognized as modelling
salient features of relevance, and thereby adopted by many representation schemes, to the
end of embodying a tight connection in meaning between the premises and the conclusion
of any argument licensed by the underlying logic.

The semantical universe of tautological entailment is based on 4 truth values, one for
each possible combination of the classical two values, hence the names of “4-valued logics”
assigned to the calculi informed by this ontological view. Recently, 4-valued TLs have been
studied in connection with the reasoning requirements of knowledge-based systems.

In the context of IR, we have proposed the study of a 4-valued semantics for the termi-
nological logic supporting a model of information retrieval, given the strong relationships
between relevance and tautological entailment on one hand, and relevance and information
retrieval on the other. Preliminary result of these studies have been reported in D1, where
a 4-valued version of the logic ALC has been presented, based on a semantics inspired by
relevance logic and tailored to the reasoning tasks of IR. In chapter 4, this semantics is
embedded in the semantics of MIRLOG, which thereby acquires the status of a 4-valued,
relevance terminological logic.

2.4 The final logic

MIRLOG is described in Chapter 5. As already mentioned, its concept constructors are
those of the logic ALC. In addition, MIRLOG provides closure assertions and has a four-
valued semantics. Furthermore, assertional formulae are introduced in MIRLOG to permit
a more articulated expression of document descriptions.

The Gentzen-style calculus presented in Chapter 4 is extended to handle the retrieval
problem on MIRLOG-knowledge bases, and its soundness and completeness are proved.
Preliminary considerations on the complexity of MIRLOG and on the modelling of relevance
feedabck are finally presented.
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Chapter 3

Closing individuals in
Terminological Logics

3.1 Introduction

The young Adso has been recently hired by the director of a very important library, sup-
ported by a sophisticate system for information retrieval (IR), based on logic. Having
been educated to appreciate the high-principled spirit of logic, Adso hardly contains his
enthusiasm for his new position. Moreover, thanks to a recommendation letter from his
master Guglielmo, he has been given an important role, that of document indexer, even
though at the beginning he will be working on very small and ordinary documents, such
as letters. After studying in depth the documentation of the system, Adso tackles his first
duty, that is to specify the representation of his recommendation letter.

The study of the system has revealed to Adso that letters are instances of the concept
Letter, so, after selecting the name d for the one at hand, he enters into the system the
assertion:

Letter(d).

The system promptly replies Assertion added, so Adso can proceed to specify the sender
of the letter, which he does by inputing the assertion:

Sender(d,Guglielmo) .

Also this time the system reacts in the expected way, and the specification of d goes on
until Adso has entered all the available information by telling the system the corresponding
assertions, some of which involving complex concepts.

At the end of the specification, Adso wants to check the result of his work by issuing
some queries to the system. In the meantime, the vice-director of the library, a notorious

17



18 CHAPTER 3. CLOSING INDIVIDUALS IN TERMINOLOGICAL LOGICS

and ferocious enemy of logic-based IR, has approached Adso’s desk, and is observing the
behaviour of the new employee from Adso’s back, with severe intensity. To begin the
checking stage, Adso poses the entered assertions as queries, and the result to all of them
is a reassuring Yes. Relieved by this success, Adso decides to poses more subtle queries,
with the undeclared intention of impressing the observer with the power of logic and his
ability to master it. Adso enters the query:

—Book(d)

asking whether d is not an instance of Book, another document type known to the system.
The expected answer is Yes, but, to the surprise of the enquirer, the system answers I don’t
know. Adso mumbles something about the difficulties of implementing negation and then
attempts a prompt recovery moving on to show the power of universal quantification. After
obtaining a Yes in response to the query Scottish(Guglielmo), he issues the query:

VSender.Scottish(d),

asking the system whether all the senders of d are Scottish. As before, a Yes answer is
expected, because Adso knows that Guglielmo is the only sender of d known to the system.
But expectations are again disappointed by another [ don’t know answer. At this point,
the amusement of the vice-director reaches its maximum. Adso is complimented and given
to read, as a prize for his powerful argument against logic-based IR, Aristotle’s Organon,
an opus kept secret to the ordinary users of the library for its revolutionary contents.

Being not fluent in ancient Greek and also short of time, Adso sets Organon apart
and resorts to a modern logic textbook. He then discovers that what was wrong with the
previous session were his expectations. In fact, as Adso knows well, the system he is using is
based on classical logical implication (in symbols, =) and, from the given premises, it does
not logically follow that d is not a letter and that all d’s senders are Scottish. Symbolically,

D = {Letter(d),Sender(d,Guglielmo),Scottish(Guglielmo),Book(c)}
D [~ —Book(d)
D [~ VSender.Scottish(d).

Having learnt the basics of logical implication, Adso realizes that, in order to license the
latter inference, the system must be told that there are no other senders of the letter
d. This can be done in any TL including number restriction operators by means of the
assertion (< 1 Sender) (d), but, unfortunately the logic underlying the library’s system
does not include the < operator; as a matter of principle, Adso refuses to add the query
itself to the representation of the document, so he gives up universal quantification and
focuses on the former inference. But even in this case, the only way to obtain the inference
is to tell the system that d is not a book; but then, thinks Adso, the same problem would
arise with the query:
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—Scottish(d).

At this point, Adso understands that he will obtain the expected behaviour of the system
only after telling the whole story about d, that is not only what d is, but also what d is
not. After a quick glance to the system catalog, Adso reckons that a complete description
of d would amount to a few thousands concept assertions, namely one assertion of the form
= A(d) for all primitive concepts A which d is not an instance of, and a few millions role
assertions, namely =R (d,c) for all primitive roles R and individual constants ¢ such that
¢ is not an R-filler of d. A comprehensible desperation takes possess of Adso.

As designers of logic-based models of IR, we sympathize with Adso and would like to
help him by devising a model that overcomes the illustrated problem. The proposed model
extends the one used by Adso with assertions on individual constants, such as a, having
the form:

Cl(a).

Informally, an assertion of this kind means that the document base contains, whether
explicitly or implicitly, everything that is true about a, and every other piece of information
on a is to be understood as false. An assertion like the above one is called a closure
assertion, as the reading of the information concerning a induced by the assertion is akin
to a closed-world assumption. The individuals that are subject to closure assertions are
said to be closed.

The desired effect of closure assertions is twofold. From one hand, they are meant
to give the indexer the possibility of specifying meta-information, regarding the way in
which the information on certain individuals is to be considered. From the other hand,
they are meant to guide the inferential behaviour of the system on closed individuals
in a way that reflects Adso’s, and our own, intuition. More precisely, while the lack of
information on non-closed individual is to be interpreted, in the usual way, as evidence of
the incompleteness of the representation, the lack of information on closed individuals is to
be interpreted as evidence to the contrary. Returning to the previous example, this means
that the desired interpretation of closure assertions would grant the following inferences:

DU{C1(d)} k. —Book(d)
DU{Cl(d)} [=. VSender.Scottish(d),
where =, is the inference relation of the new model. =, should clearly be non-monotonic,

as the addition of knowledge should block the application of closed-world reasoning. For
instance, the following should hold:

DU {C1(d)} U {Book(d)} }. —Book(d).

In the rest of this chapter, after reviewing related work, we define knowledge bases
including closure assertions and provide a semantics for them, based on the notion of
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possible world. The concluding sections are devoted to the discussion of the behaviour
of KBs with closure assertions. In particular, Section 3.4 illustrates formally the positive
properties of the semantics, while Section 3.5 presents a form of inconsistency due to the
interaction between normal and closure assertions.

The proofs of the propositions introduced in this Chapter are not given, as they are
mostly re-phrasing of the corresponding proofs Chapter 5, given in the appendix.

3.2 Relation to Other Approaches

Since the seminal paper by Reiter [Reiter, 1987], many forms of closed-world assumption
(CWA) have been investigated (see [Lukaszewicz, 1990] for a thorough review of this work).
Without going into the details of the single proposals, we observe that none of them is
able to apply the closure to specified individuals. Furthermore, the results obtained in
these studies do not carry over Terminological Logics, as they are formulated for universal
theories without equality. As it is well known, the first-order counterparts of Terminological
Logics are first-order calculi with existential quantification [Patel-Schneider, 1987¢] and
even equality if number restrictions are allowed.

For this reason, formulations of the CWA for Terminological Logics have recently
appeared which are based on the usage of an epistemic operator [Donini et al., 1992a;
Donini et al., 1992b]. The basic idea behind these proposals is to enforce a CWA reading
of the information about an individual a by using an epistemic operator K in queries re-
garding a. Applied to the previous example, this means that in order to obtain a positive
answer on the non-membership of d to the Book concept, one has to pose the query:

—KBook(d),

asking is whether d is not known to the knowledge base to be a book, which is indeed the
case. Analogously, the answer to the query:

VKSender.Scottish(d)

is Yes because there is only one known sender of d and he happens to be Scottish.

As made clear by these examples, the usage of an epistemic operator in queries allows
one to ask questions not only on how the modelled world is, but also on what the knowledge
base knows about such world [Reiter, 1990a]. It is also evident that this usage permits
to capture, among other things, some form of CWA. However, a clear connection between
epistemic queries to terminological knowledge bases and any of the various CWA formu-
lations has been established only in a very restricted case (see Theorem 5.1 in [Donini et
al., 1992a]); thus, strictly speaking, one cannot claim full control of how epistemic queries

realize CWA.
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Besides this formal argument, the adoption of the epistemic approach in our setting
is problematical due to the fact that queries to document bases are not assertions, but
concepts, returning the individuals that, in every interpretation, are instances of the query
concept [Meghini et al., 1993]. Now, let us consider the document base E and the query C
defined as follows:

= {Letter(d),Cl(d),Letter(a)}
= —Book.

According to our intended meaning of closure assertions, the answer to C in E should be
the set {d}, as d is the only closed individual in E. In order to achieve this goal by means
of epistemic queries, C should be broken into two assertion queries C; and C,, given by:

C; = —Book(a)
C; = —KBook(4).

The transformation is cumbersome and, when applied to nested concepts, is prone to
generate a number of queries which is exponential in the number of individuals in the
document base. In addition, it can be performed only once the closed individuals are
known. But then, it is preferable to use closure assertions in a more direct and neat way,
devising a semantics that reflects the intuition behind these assertions. And this is precisely
our approach.

3.3 Knowledge Bases with Closures

Let O be an alphabet of symbols, called individuals, and denoted by a and b. The concepts
(denoted by the letters C' and D) of the MIRLOG language are those of the logic ALC,
built out of primitive concepts (denoted by the letter A) and primitive roles (denoted by
the letter R), according to the following rule:

c,D — top concept)
bottom concept)

S

|
|
| (primitive concept)
CTD | (concept conjunction)
CuUD| (concept disjunction)
-C |
VR.C| (
dR.C (

concept negation)
universal quantification)
existential quantification)

Roles in MIRLOG are always primitive. As customary, in the rest of this document we will
omit parentheses around concepts, unless the need for disambiguation arises.
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Let A be the domain, a countably infinite set of symbols, called parameters and denoted
by p; and py, and v a fixed injective function from O to A. An interpretation 7 is a total
function mapping every concept to a subset of A and every role to a subset of A x A, so
that the following equations are satisfied:

T = A
=0
(cnbDy = c¢ctnbD?
(cuDy} = ctubp?

)
)
(-C)YF = A-(C?
)! = {p €Al forall ps, (p1,p2) € R implies p, € C7}
(AR.CYY = {p1 € A| there exists p2, (p1,p2) € RF and p; € 7}

An assertion is an expression having one of the following forms:

e concept assertion: C'(a);
e role assertion: R(a,b);

e closure assertion: Cl(a), where C1 is a special operator.

For brevity, concept and role assertions will be called simple, and closure assertions simply
closures. A concept assertion is ground if the involved concept is primitive. Role assertions
are always ground. An individual subject to a closure is called closed.

Satisfaction of simple assertions is defined in the standard way, i.e. an interpretation 7
satisfies C'(a) if and only if v(a) € CF, whereas 7 satisfies R(a, b) if and only if (y(a), v(b)) €
RT. Finally, T satisfies, or is a model of, a set of assertions if it satisfies each assertion in
the set.

Satisfaction of closures is defined on the basis of a notion of minimal knowledge, mod-
elled by epistemic interpretations. An epistemic interpretation is a pair (Z, W), where T
is an interpretation and W is a set of interpretations. An epistemic interpretation satisfies
a closure C1(a) if and only if the following two conditions hold:

1. for every primitive concept symbol A, v(a) € A7 if and only if y(a) € A7 for any
J EW;

2. for every primitive role symbol R and parameter p € A, (v(a),p) € R? if and only if
(v(a),p) € RY for any J € W.

An epistemic interpretation is a model of a set of closures if it satisfies each closure in the
set.
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As it will be clear in a moment, in an epistemic interpretation (Z, W), the elements of W
are supposed to represent all the possible worlds that the modelled agent (the document
base) is aware of, thus forming the context in which closures are to be interpreted. In
particular, if @ is a closed individual, condition 1 above allows v(a) to belong only in the
extensions of the primitive concepts that contain v(a) in all possible worlds. Condition 2
imposes an analogous constraint on extensions of primitive roles.

A knowledge base is a pair (X, ), where X is a finite set of simple assertions and ) a
finite set of closures. An interpretation Z is a model of (X,9) if and only if 7 is a model
of ¥ and (Z, M(X)) is a model of Q, where M(X) are the models of ¥. It is easy to verify
that, for any model of a knowledge base and closed individual a, v(a) is allowed in the
extension of a primitive concept A just in case A(a) is a logical consequence of the simple
assertions, in symbols ¥ = A(a). Analogously, a model Z of (¥,) is a model of ¥ in
which, for every primitive role R, closed individual a and individual b, (y(a), (b)) € RY
if and only if ¥ = R(a,b). In other words, closures force minimal knowledge on closed
individuals, ruling out models in which these individuals show up in undue places.

A knowledge base (X, Q) logically c-implies a simple assertion «, in symbols (¥, Q) =, «,
if and only if every model of (X, Q) satisfies a.

Next section investigates the main properties of the model introduced so far.

3.4 Properties of the Model

First, let us consider the example introduced in Section 3.1, having:

Y = {Letter(d),Sender(d,Guglielmo), Scottish(Guglielmo),Book(c)}
Q = {c1(d)}

Thanks to the closure of d, in all the models of (¥, ), v(d) only belongs to the extension
of Letter and, as first member of a pair, to that of Sender. The other parameters of A,
among which there are v(c) and v(Guglielmo), are free to occur in any of the extensions
of the primitive concepts and roles, provided, of course, that all the assertions in ¥ are
satisfied. Among other things, this means that:

e in all the models of (X,€), v(d) is not in the extension of Book, hence, as desired,

(3,9) . ~Book(d);

e in all the models of (X, ), v(Guglielmo) is the only parameter to be in the extension
of Sender as a second member of a pair whose first element is v(d); moreover, in all
the models of (X,2), v(Guglielmo) is in the extension of Scottish; it follows that,
all the models of (¥, Q) satisfy VSender.Scottish(d), therefore:

(3,9) . VSender.Scottish(d).
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Thus, in order to achieve his goal, Adso would have just to close d.

More generally, a closure completes the knowledge on the closed individual, granting
inferences requiring negative information that normally would not be licensed. As a con-
sequence, for every concept of the language, either the closed individual is an instance of
that concept or it is an instance of the negation of that concept. This result, stated by the
next Proposition, is a first evidence of the adequacy of our formalization to the declared
intent.

Proposition 1 Let (¥,9Q) be a knowledge base, Cl(a) € Q and C(a) a concept assertion.
Then, either (X,9Q) =, C(a) or (£,9) . ~C(a).

The converse of the last Proposition is given by the next one, stating that, under
certain circumstances, the knowledge base behaves as if it contained a certain closure.
This Proposition can be proved in the strongest form, i.e. by requiring implication of only
ground assertions.

Proposition 2 Let (X,9Q) be a KB. If for every primitive concept A, either ¥ |= A(a) or
Y = —A(a), then T is a model of (X,9Q) if and only if T is a model of (£,QU {Cl(a)}).

It is natural to ask how c-implication relates to classical logical implication, which is
denoted as |= . The answer to this question comes in three steps. First, a knowledge base
with no closures is equivalent to a set of simple assertions, in that the two have the same
models.

Proposition 3 Let X be a set of simple assertions. Then an interpretation T is a model

of (X,0) ¢f and only if T is a model of ¥.

Second, in presence of closures, c-implication extends classical implication, that is
= C |=. . This relationship is derived in two steps: next Proposition asserts that = C =, .

Proposition 4 Let (X,9Q) be a knowledge base and C(a) a simple assertion. Then ¥ |=
C(a) implies (£,9Q) . C(a).

In order to show that |= # |=,, it suffices to consider the knowledge base (X, (2) defined
at the beginning of this Section. As it has been shown, ¥ [~ —Book(d), whereas (X, ) |=.
—Book(d).

Finally, the next Proposition shows exactly what is the inferential gain of c-implication
over classical implication.

Proposition 5 Let (X,9) be a knowledge base and Cl(a) € Q2. Then for each primitive
concept A,
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1. ¥ = A(a) implies (X,9) E. Ala);
2. ¥ = A(a) implies (£,9Q) =, ~A(a).

Conversely, if (X,Q) is satisfiable, then for each primitive concept A,

3. (3,9) E. A(a) implies ¥ |= A(a);
4. (3,Q) e 7Ala) implies ¥~ A(a).

In fact, part 1 of the last Proposition is a special case of Proposition 4 and it has
been stated in this form for symmetry with the rest of the Proposition. It states that
c-implication preserves implication. Part 2 further confirms the adequacy of our model, by
stating that the absence of positive, ground information on closed individuals is understood
as evidence to the contrary. But the most important part of the Proposition is the converse,
as it establishes the consequences of c-implication. If (¥, ) is not satisfiable, everything
is c-implied by it, so the case is not particularly interesting, in this context. On the
contrary, if (X, ) is satisfiable, the positive, ground assertions c-implied by it are exactly
those implied by X, whereas the negative ground assertions c-implied by it are exactly the
negation of the positive, ground assertions not implied by X.

The last result gives us the possibility of comparing our model with Naive CWA, his-
torically the first notion of CWA to be proposed. Naive CWA is defined for finites sets
of first-order sentences without equality and whose prenex normal forms contain no exis-
tential quantifiers. If T"is one such sets, then the naive closure of T, NCWA(T), is given
by:

NCWA(T)=TU{-A: Tt/ Aand A€ HB(T)},

where H B(T') is the Herbrand Base of T'. Given the completeness of first-order logic, we may
replace F by |= . Furthermore, since we are considering theories with no function symbols,
the terminological correspondent of HB(T') is the set of positive ground assertions. It
then follows that c-implication captures Naive CWA for theories which, although not as
expressive as a first-order calculus, do provide the basic connectives and both quantifiers,
in some form.

3.5 Consistency

Closures add a significant expressive power to the language for document representation,
but, if not used properly, open the way to a new form of inconsistency. Let us consider the
following knowledge base:

e
|

{3Sender.Scottish(d)}

0 = {ci(a)}.
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Simple assertions in X state that d has a Sender without saying who it is. The knowledge on
d is thus far from being complete. Nevertheless, the closure of 4 in € invites the knowledge
base to assume that the knowledge on d is complete. Needless to say, this knowledge base is
inherently inconsistent, and, as a matter of fact, it has no models. Technically, the generic
model of (X,Q), let it be Z, by definition should satisfy the following two requirements:

1. Z should be a model of ¥, which means that it must have at least one pair of
parameters (v(d),p;) in the extension of Sender such that p; is in the extension of
Scottish;

2. in Z, the pair (y(d),p1) can be in the extension of Sender only if it so does in every
model of ¥, which is not the case, whatever p; one considers.

These two requirements are clearly incompatible, hence (X, ) is unsatisfiable.

Technically speaking, this behaviour of closures is similar to that of the Naive closure
of a theory. The latter,when applied to the theory:

{P(a) vV P(b)},

yields the theory:
{P(a) Vv P(b),~P(a),~P(b)}

obviously inconsistent [Lukaszewicz, 1990]. However, there is a big methodological dif-
ference between our approach and NCWA, or, for that matter, all other approaches with
the same goal: in MIRLOG, the closure of individuals is not something happening “behind
the scene”, but is explicitly required by the indexer, who has therefore full control of the
situation.

In the previous example, it is evident that the indexer, closing d has misused the
expressive power of the logic, breaking the consistency of the knowledge base as it could
happen if misusing any other construct. As a matter of fact, none having a minimum
familiarity with logical modelling can claim that ¥ gives a complete specification of the
positive knowledge on d, hence the closure of that individual is entirely undue.



Chapter 4

Relevance semantics

This Chapter presents a Relevant TL, ALC4, which is the core of the FERMI logic-based
IR model, as it gives a desirable “relevance” flavour of relevance logics. In order to perform
automated reasoning in this logic, a general and modular inference algorithm based on a
Gentzen-style calculus is developed. Finally, a four-valued version of Craig’s interpolation
theorem is given, with the aim of showing that the defined entailment relation captures a
close structural relationship between a knowledge base and a query. In the next Chapter,
we will show how interpolants can be used to model relevance feedback. A preliminary
version of ALC4 has been presented in deliverable D1. Proofs of the lemmas, theorems and
propositions presented in this Chapter as well as in the next one, are given in Appendix B.

4.1 Introduction

IR can be presented as the task of retrieving the documents that are relevant to a given
information need (query) [van Rijshergen, 1986a; van Rijsbergen, 1986b]. In logical terms,
IR amounts to the extraction, from a document base, of those documents d that, given a
query ¢, make the formula d — ¢ valid, where — is the logical implication relation of the
adopted logic, aiming to capture a relation of relevance of the premise d to the conclusion
q.

Among the many possible readings of the term “relevance”, the one captured by rel-
evance logic [Anderson and Belnap, 1975], and in particular by first-order tautological
entailment, can be chosen as a promising source of inspiration to the end of incorporating
a logic-based form of relevance in the inference mechanism of TLs. The underlying tenet
of the criticism of relevance logicians to classical logic is that relevance of a premise to a
conclusion is essential for asserting the implication between the premise and the conclu-
sion. As a consequence of this criticism, the key concern underlying relevance logics is
that of formalizing in a logic-based way a more suitable form of relevance than material
implication. The notion of logical entailment can thus be considered arguably closer to the

27
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notion of relevance needed in information retrieval than the one of material implication of
classical logic.

In semantical terms, relevance is modelled by adopting a four-valued semantics [Belnap,
1977a; Belnap, 1977b; Levesque, 1984] for TLs, thus obtaining Relevant Terminological
Logics. In a relevant TL, assertions can be not only true or false in an interpretation, but
also neither true nor false (a state of affairs which is known as unknown), or both true and
false (a state of affairs which is known as contradiction); hence, the resulting semantical
domain provides the four truth values true, false, unknown and contradiction.

Logics of this kind have already been used in Knowledge Representation and Reasoning
in order to avoid the so-called paradoxes of logical implication when reasoning on concepts
and individuals. These logics have also been proven to have a generally better computa-
tional behaviour than their two-valued analogues [Levesque, 1984; Patel-Schneider, 1987a;

Patel-Schneider, 1986; Patel-Schneider, 1987b; Patel-Schneider, 1989].

Unfortunately, we have observed that the adoption of the by now classical four-valued
semantics [Patel-Schneider, 1987a; Patel-Schneider, 1986; Patel-Schneider, 1987b; Patel-
Schneider, 1989] results in a too drastic loss of inferential capabilities for IR. In addition,
the algorithms and proofs are rather complex and seem not to be sufficiently modular in
order to be easily adapted to the AL family of TLs.

The aim of our work is to present a less restrictive four-valued semantics for TLs,
which could be considered as a suitable core for IR purposes, while maintaining the de-
sired “relevance” flavour of relevance logics. In order to perform automated reasoning on
this logic, we will also present a new, general and modular inference algorithm based on
a Gentzen-style calculus [Borger, 1988; Gallier, 1986; Thistlewaite et al., 1988] for a four-
valued variant of ALC, which we will call ALC4. Apart from the fact that our semantics
extends in a significant way the inferences usually achieved in four-valued TLs, we claim
that our Gentzen’s sequent calculus is as flexible as constraint propagation methods, pro-
posed as an effective proof procedure in two-valued semantics (see, for example, [Donini et
al., 1991a]). Our calculus avoids the lack of flexibility of existing approaches (see, for ex-
ample, [Patel-Schneider, 1989]). Since ALC, can be considered as a good representative
for AL-languages', our opinion is that this framework could be also considered as a good
basis for both research on reasoning algorithms and complexity analysis, in a four-valued se-
mantics context of AL-languages. Moreover, a four-valued version of Craig’s interpolation
theorem is presented. This theorem states that the defined entailment relation captures
a close (structural) relationship between a knowledge base and a query. Therefore, the
defined entailment relation could arguably be a good theoretical and practical basis for a
logic-based approach to IR.

The rest of this chapter is organized as follows. In the next section we will give the
syntax and semantics of ALC4. In Section 4.3 we will discuss our semantics and we will

!Note that the constraint propagation method was first applied to ALC, too [Schmidt-SchauB and
Smolka, 1991].
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show, by means of examples, differences to standard two-valued semantics, differences to
existing four-valued semantics and its suitability for IR. In Section 4.4 we will present
a sequent calculus for ALC, and in Section 4.5 we will present a four-valued variant of
Craig’s interpolation theorem. Section 4.6 gives preliminary remarks on the computational
complexity of ALC,.

4.2 The four-valued concept language ALC,

In this section we present the syntax and semantics of ALC,%. For a more general presen-
tation of the operators allowed in TLs, see [Donini et al., 1992d; Nebel, 1990]. For a more
extensive discussion on four-valued TLs, see [Patel-Schneider, 1987a; Patel-Schneider, 1986;

Patel-Schneider, 1987b; Patel-Schneider, 1988; Patel-Schneider, 1989].

4.2.1 Syntax

We assume two disjoint alphabets of symbols, called primitive concepts and primitive roles.
The letter A will always denote a primitive concept and the letter R will always denote a
primitive role. Furthermore, we assume an alphabet of symbols called individuals, disjoint
from the alphabets of primitive concepts and primitive roles. Individuals will be denoted
below by a and b. The concepts (denoted below by C' and D) and the roles (which in ALC,4
are always primitive) of the language ALC4 are formed out of primitive concepts and roles
according to the following syntax rule:

c,.D — Al
cnp |
cub|

(primitive concept)
(
(
-C'| (concept negation)
(
(

concept conjunction)
concept disjunction)

VR.C'| (universal quantification)
JR.C' (existential quantification)

An assertion is an expression of type C'(a) (meaning that a is an instance of ('), where a
is an individual and C' is an ALC4 concept, or an expression of type R(a,b) (meaning that
a is related to b by means of R), where a and b are individuals and R is an ALC4 role. An
assertion made out by a primitive symbol is called primitive assertion. An assertion made
out by a negated primitive symbol is called negated primitive assertion (note that roles are
never negated). Finally, an ALC4 knowledge base is a finite set of assertions.

In the following, we use parentheses only when we need to disambiguate concept ex-
pressions. For example, we will write (VR.C') M D to mean that the concept D is not in

ZAlthough we restrict our attention to a four-valued variant of ALC, our framework can be applied to
other languages as well.
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the scope of VR. In addition, the term “concept” is to be understood as ALC4-concept,
unless otherwise stated.

4.2.2 Semantics

The formal semantics of the logic ALC, is four-valued. The four truth values are the
clements of 24} the powerset of {t, f}, i.e. {t, f}, {}, {t} and {f}. These values are best
understood as epistemic states of a reasoning system about some proposition. Under this
view, if the truth value of a proposition contains ¢, then the system has evidence to the effect
— or beliefs — that the proposition is true. Similarly, if the truth value of a proposition
contains f, then the system believes that the proposition is false. The truth value {}
corresponds to lack of knowledge, and the truth value {¢, f} corresponds to inconsistent
knowledge.

In four-valued semantics it is possible to have inconsistent knowledge about some propo-
sition without being totally inconsistent. This property, which is shared by other relevance
logics, 1s touted as one of the advantages of relevance logics, especially when modelling
states of knowledge.

Definition 1 An interpretation Z = (A% .T) consists of a non empty set AT (the domain
of ) and a function - (the interpretation function of T) such that

1. T maps every concept into a function from AT to 216/
2. T maps every role into a function from AT x AT to 2{6/};
3. T maps every individual into AT ;

4. at £, ifa # b3, 1

The interpretation function can best be understood as an extension function of two separate
two-valued extensions — the positive extension and the negative extension — defined next.

Definition 2 Let T be an interpretation. The positive extension of a concept C' in I,
wrilten C_II_, is the set of domain elements that are known to belong to the concept, and s
defined as {d € AT : t € CT(d)}. The negative extension of a concept C' in I, written CT,
is the set of domain elements that are known not to belong to the concept, and is defined as
{d e AT : f e C(d)}. The positive and negative extension of roles are defined similarly.
[ |

3This restriction on individuals, called unigue name assumption, ensures that different individuals
denote different elements of the domain.
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Note that, unlike standard semantics, positive and negative extensions need not to be
complement of each other*. Domain elements that are members of neither set are not
known to belong to the concept. This is a perfectly reasonable state for a system that is
not a perfect reasoner or does not have complete information. Domain elements that are
members of both sets can be thought of as inconsistent with respect to that concept, in
that there is evidence to indicate that they are in the extension of the concept and, at the
same time, not in the extension of the concept. This is a slightly harder state to rationalize
but can be considered a possibility in the light of inconsistent information.

The extensions of concepts and roles have to meet certain restrictions, designed so that
the formal semantics respects the informal meaning of concepts and roles. For example,
the positive extension of the concept AMNB must be the intersection of the positive extension
of A and B and its negative extension must be the union of their negative extensions, thus
formalizing the intuitive notion of conjunction in the context of the four-valued semantics.

Definition 3 Let T = (A%, 7)) be an interpretation. The interpretation function X has to
meel the following equations for concepts: for each d € AT

te(CcnDY(d) if teCT(d) andte D¥(d)
fe(nby(d) iff feC¥(d) orfe D™(d)
te(CuD)(d) iff teCT(d) orte D¥(d)
fe(CuDbDy(d) iff feC™(d) and f e D*(d)
te (~C) (d) i feC(d)
fe(=0)'(d) iff teC(d)

te (VRCY(d) iff Yee ALt e R (d e
fe(VRCY(d) iff Jee AT te RY
te (3R.CY(d) iff Jee Al te R(d,e
fe@RCY(d) iff Yee ATt e R (d,e

implies t € CT(e)
and f € C¥(e)
and t € C*(e)
implies f € C*(e)

€

d
d,
d
d

e N N S

Observe that, in accordance with the intuitive meaning of the qualified existential operator

3, (AR.C): = (-VR.~C)} and (FR.C). = (-VR.~C)..

The notion of subsumption between two concepts is defined in terms of their positive
extensions as follows.

Definition 4 Given two ALCy-concepts C' and D:

1. C subsumes D (written D T C') iff D_II_ C C_II_, for every interpretation I;

*In two-valued standard semantics, we have: C’f NCZ = 0 and C’f U CZ = AZ, or equivalently
Cf = AT\ C’f.
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2. C is equivalent to D, written C = D, iff CL = D_II_, for every interpretation 7T. 1
With respect to assertions, we have the following definitions.

Definition 5 An interpretation T satisfies an assertion « iff

te Ct@) if a=C(a)
te RE(a?, ") if o= R(a,b)

Definition 6 An interpretation T satisfies a knowledge base ¥ iff T satisfies all assertions
in ¥. A knowledge base ¥ entails an assertion «, written ¥ | «, iff for all interpretations

Z, if T satisfies X2 then T satisfies a. 1

The inclusion of terminological axioms in the model presented thus far can be done in
a similar way as for standard two-valued TLs (see, for example, [Hollunder et al., 1990;

Nebel, 1990]).

4.3 Discussion of the semantics

In order to compare our four-valued semantics with the two-valued one, we will use the

notation “j=5” for the classical two-valued logical implication relation, and “C,” for the

two-valued subsumption relation.

4.3.1 Soundness of four-valued semantics

In this section we will show that reasoning wrt four-valued semantics is sound wrt classical
semantics. To this purpose, we will show that the set of two-valued interpretations is a
(proper) subset of the set of four-valued interpretations.

Consider a four-valued interpretation 7 such that for every primitive concept A and
primitive role P, the positive and negative extensions are both disjoint and exhaustive, i.e.
AT = AT\ AE_ and PT = AT x AT\ Pf. By case analysis on the language operators, it can
be shown that such an interpretation is a two-valued interpretation for TLs. In fact, note
that for two-valued interpretations, given a concept (' and a role R, the following hold:

te Ctd)iff f¢ C*(d)

t€ RE(d,e)iff f & R¥(d,e)



4.3. DISCUSSION OF THE SEMANTICS 33

Therefore, the set of two-valued interpretations is a (proper) subset of the set of four-valued
interpretations. It then follows easily the soundness of reasoning in this logic with respect
to standard two-valued semantics.

Lemma 1 Let X be a knowledge base, a an assertion and C, D two concepts. Then

1. if CC D then C Cy Dy,

2. if ¥ R a then ¥ |5 a. 1

Soundness of the subsumption relation and the entailment relation is an important require-
ment if the semantics is to capture some of the intuitive ideas underlying TLs.

4.3.2 Some subsumption relations

The subsumption and entailment relations supported by ALC, are interesting subsets of
the two-valued relations and are suitable to IR, as we will see below.

In ALCy, the concept

Document [1 ddealswith.Relevance

subsumes, as desired, the concept :

Document [1 (Jdealswith.(InformationRetrievalllRelevance))
M (Vauthor.Italian)

i.e., a document dealing with IR and relevance and whose authors are all Italian is also
a document dealing with relevance. A more complicated subsumption relationship is the
one between concept C given by:

ddealswith.Informat ionRetrieval)
Jdealswith.TerminologicalLogics)
Jdealswith.Relevance)

Document (
E
(Vdealswith.LogicBased)
(
(
(
(

(4.1)

(I
(I
(I
(I
M (Jtype.Article)

M (Vauthor.Italian)
M (Jauthor.Researcher)
M (Jtypesetwith.LaTeX)

and concept Cy given by:
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Document [1 (Jdealswith.(RelevancellLogicBased))

M (Jtype.(ArticlellBook Ll TechnicalReport)). (4.2)

In words, a document (a) of type article, (b) typeseted in IATEX, (¢) whose authors are
[talian and at least one of them is a researcher, and (d) dealing with IR, TLs and relevance,
all of these are logic-based, is also a document dealing with a logic-based approach to
relevance, whose type is either article, or book or technical report. Therefore, if doc324 is
described by means of concept (1, i.e. C'1(doc324) is in ¥, then doc324 would be retrieved
by query Cs. In fact, ¥ |r (C3(doc324), which is a perfectly reasonable and desirable
inference for IR purposes.

4.3.3 Some entailment relations

In the following we will restrict our attention only to the entailment relation, as subsump-
tion can be defined in terms of entailment (see next section).

Consider the assertion

(MultimediaDocument
M (Vcomponent.ddoctitle.{Fermi})
M (Jcomponent.((JdoctypeMovie) M {vt2})) 13
M (Jcomponent.((Jdoctype.Text) M {t2})) (4.3)
M (Jcomponent.{ut2})
M (Jcomponent.{ut3}))(doc2)

saying that doc2 is a multimedia document with at least four components: a text t2 a
movie vt2, and ut2 and ut3 of undefined type. Let us now consider the knowledge base

Y, defined as follows:
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¥1 = { (Document
(Jdealswith.InformationRetrieval)
(Jdealswith.TerminologicalLogics)
(Jdealswith.Relevance)
(Vdealswith.LogicBased)
(Jtype.Article)

(Vauthor.Italian)
(Jauthor.Researcher)
(Jtypesetwith.LaTeX))(doc324),

(
(
(

3131333333

(Document
M (ddealswith.InformationRetrieval) (4.4)
M (ddealswith.TerminologicalLogics)
M (Vauthor.Italian))(doc211),
(MultimediaDoc
M (Vcomponent.ddoctitle.{Fermi})
Jcomponent.((Jdoctype.Movie) M {vt2}))
Jcomponent.((Jdoctype.Text) M {t2}))
Jcomponent.{ut2})
M (Jcomponent.{ut3}))(doc2),
author(doc211, Umberto), author(doc2, Umberto),

French(Umberto) } U ¥y U Xj

M
M
M

e e ma e,

where

1. ¥, states that French and Italian are “disjoint” concepts®, i.e. for our purpose
consider only
Yy = {-Italian(Umberto)} (4.5)

2. Y3 states that multimedia document components are all of type movie or of type
text, i.e. for our purpose consider only

Y3 = {(Jdoctype.(Movie L Text))(ut2)} (4.6)

About modus ponens on roles

The following entailment relationships are readily verified:

Y1 | (Document (4.7)
M (Jdealswith.(RelevancellLogicBased))
M (Jtype.(Articlel) Book LI TechnicalReport)))(doc324)

°If someone is known to be French, then it is known not to be Italian.
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as seen above, doc324 is a document dealing with a logic-based approach to relevance,
whose type is article, book or technical report;

Y1 | (MultimediaDoc 1 Jauthor.Italian)(doc2) (4.8)

i.e. from the fact that Umberto is the author of doc211 and that all authors of doc211
are Italian, it can be inferred that Umberto is Italian, hence that doc2 is a multimedia
document with an Italian author;

Y1 e ((Fdoctitle{Fermi}) M (Jdoctype.Movie))(vt2) (4.9)

i.e. vt2 is retrieved as a response to the query “retrieve all movies which are titled Fermi”.
In fact, vt2 is a component of doc2 of type movie. All components of doc2 are titled
Fermi. Therefore, vt2 is titled Fermi.

We claim that all three inferences are reasonable for IR purposes, in particular note
that (4.8) and (4.9) are not trivial inferences. All three inferences are mainly based on the
following key observation on our semantics, which in this case differs significantly from all
other approaches. In fact, we allow modus ponens on roles (MPR, for short): i.e. for all
concepts ' and D, for any role R, and for all individuals a, b

{(VR.C)(a), R(a,b)} ke C(b) and {(VR.C)(a),(3R.D)(a)} k (3R.C' N D)(a) (4.10)

This kind of inference is not allowed by other four-valued TLs, as, for example, in [Patel-
Schneider, 1987a; Patel-Schneider, 1986; Patel-Schneider, 1987b]). The key difference lies

into the semantics of the V operator. Patel-Schneider’s condition in this case looks like

te (VR.CY(d) iff Yee AT fe RI(de)orteC(e)
fe(VRCY(d) if Fee ATt e R(d,e)and feC¥e).

It is easy to see that, according to this semantics, there exists an interpretation Z which
satisfies X; and such that both ¢ and f are in author? (doc211?, Umberto? ) without being
t € Ttalian® (Umberto’), and thus, ¥; does not entail Ttalian(Umberto) hence,

Y1  (MultimediaDoc 1 Jauthor.Italian)(doc2).

We claim that MPR is very useful for IR and have therefore included it in our logic.
About paradoxes of logical implication
In the following we will show what kind of inferences are not captured in our framework.

The first two examples are about the so-called “paradoxes of logical implication” when
reasoning on concepts and individuals.
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First, note that the knowledge base ¥; has a “local inconsistency” in classical terms
about Umberto’s nationality, without being totally inconsistent. In fact, we have

Y1 e (Italianl1—Italian)(Umberto) (4.11)
and thus,
Y1 | (MultimediaDoc 1 Jauthor.Italian)(doc2) (4.12)
and
Y1 (MultimediaDoc M Jauthor.—~Italian)(doc2). (4.13)

This means that doc?2 is retrieved in both cases since in Y; there is evidence to the fact that
doc2is an instance off the queries MultimediaDocl1dauthor.Italian and MultimediaDocll
Jauthor.—Italian. On the other hand, in the document base 3, there is nothing about
vt2’s authors. Therefore, as we would expect,

Y1 P ((Fdoctype.Text) M (Vauthor.{Umberto}))(vt2). (4.14)

In two-valued semantics, since ¥ is inconsistent

Y1 2 ((Fdoctype.Text) M (Vauthor.{Umberto}))(vt2). (4.15)

Clearly, this last kind of inference in not acceptable in IR: there is nothing in ¥; about
vt2 which is relevant to the query (Jdoctype.Text) I (Vauthor.{Umberto}).

This example shows, in a simple way, one of the advantages of a four-valued semantics:
inconsistent knowledge bases (from a two-valued semantics point of view) do not entail
everything.

Dually, concepts, whose extensions are always the entire domain of an interpretation,
are not necessarily entailed by every knowledge base. In fact,

Y1 e (3.doctype.(Movie L Text))(ut2) (4.16)

and

Y1 & (Vdoctype.(Movie Ll =Movie))(ut3) (4.17)
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which we feel both correct. In fact, (4.16) follows directly from ¥;, whereas (4.17)
holds since there is an interpretation Z, such that ¢ € A? and ¢ € doctype’ (ut3,¢) and
MovieI(e) = (. This is a state of affairs which models the fact that in ¥; there is no
evidence about ut3’s document type, whatever it could be.

Whereas, wrt two-valued semantics, we have

Y1 |2 (Vdoctype.(Movie Ll -Movie))(ut3) (4.18)

To our opinion, missing this last kind of inference is important for IR purposes, since we
want relevance of the premise to the conclusion.

About reasoning by cases

Finally, case reasoning does not work within our semantics. Consider the following knowl-
edge base

¥y = { Document(doc74), component(doc74,t741), component(doc74, t742),
translation(t741,t742), translation(t742,t743),
ItalianText(t741), "ItalianText(t743)

}

The meaning of ¥4 is: doc74 is a document with two components, t741, which is an Italian
text, and t742. t743 is not an Italian text. Moreover, t742 is a translation of t741 and
t743 is a translation of t742.

Consider now the assertion

« = (Jcomponent.(ItalianText N Jtranslation.~ItalianText))(doc74)

Let Z be an interpretation which satisfies Y4 such that ItalianText?(t742%) = ). It is
easy to see that such an interpretation exists. Now, it follows that

t ¢ (Jcomponent.(ItalianText [ Itranslation.—~ItalianText)) (doc74”)

and, thus,

S4B a (4.19)

whereas, perhaps surprisingly,
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24 |:2 .

At first sight it would seem that ¥, £2 a: since t742 and t741 are the only known com-
ponents of doc74, and ¥4 [5» (ItalianText M Jtranslation.—ItalianText)(t741) and
Y4 F£2 (ItalianText M dtranslation.mItalianText)(t742). However, consider any two-
valued interpretation Z which satisfies 4. In this interpretation either ItalianText (t742)
is true or ItalianText (t742) is false. In the former case, doc74 has t742 as a compo-
nent which is an Italian text and whose non-Italian translation is t743. In the latter case,
doc74 has t741 as a component which is an Italian text and whose non-Italian translation
is t742. Therefore, in both cases « is true in 7 and, thus, ¥4 = a.

Note that ¥4 & a since it could be the case ItalianText?(t7427) = (). That is, we
are uncertain about t742’s text language. Therefore, it is easy to see that if we know
something about t742’s language then « holds: i.e.

Y4 U{(ItalianText Ll mItalianText)(t742)} K « (4.20)

We feel that (4.19) could be acceptable in the light of (4.20): i.e. since we have no relevant
information about t742’s text language (in fact, we have no information at all about t742’s
text language) case reasoning no longer holds.

To sum up, what kind of relevance relation is captured by |k 7 Roughly speaking, a
knowledge base ¥ entails everything that is explicitly known, i.e. that is in the transitive
closure of ¥ by means of MPR and the operators M, U, =, 3, as (4.7), (4.8), (4.9), (4.12) and
(4.13) demonstrate. All other inferences are left out, as (4.14),(4.17) and (4.19) show.
More precisely, in order ¥ | a to hold, the structural components of o must have an
analogue in ¥, modulo MPR. We will see this formally in Section 4.5.

4.4 A Gentzen style sequent calculus for ALC,

In this section we will present a complete Gentzen-like sequent calculus for entailment in
ALC4. We will start out by arguing that the known methods for performing automated
reasoning in TLs are not adequate for the present framework.

The most popular of these methods, constraint propagation, does not work because
it is based on refutation, thet is it follows the schema o = f if and only if a A (3 is
unsatisfiable, which does not hold in a four truth value framework. In particular, it is
easily to see that, in our four-valued semantics, every knowledge base is satisfiable.

The method developed by Patel-Schneider for four-valued TLs is not applicable in our
setting. In fact, the procedures presented in [Patel-Schneider, 1987a; Patel-Schneider, 1986;
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Patel-Schneider, 1987b; Patel-Schneider, 1989] are based on Levesque’s method for four-
valued propositional entailment [Levesque, 1984]: let

?
k=1

for 7 = 1,2, be two propositional formulae in conjunctive normal form, where each al is a
disjunct in clausal form. Then a4 tautologically entails a if and only if for each 1 < 53 < ny
there exists 1 <1 < ny such that o] C oz?.

Unfortunately, this method is not sound and complete with respect to the semantics of
the V operator; in addition, the algorithms and proofs are rather complex and seem not to
be sufficiently modular in order to be easily adapted to the AL family of TLs.

The proposed Gentzen-style sequent calculus avoids the above problems, as we will see
below.

4.4.1 A brief overview on Gentzen-style sequent calculus

Originally, Gentzen proposed [Gentzen, 1935] the calculus LK (Logisches Kalkiil — Log-
ical Calculus) for First Order Logic (FOL, for short). This calculus is based on FOL

sequents, rules over sequents and axioms (which are themselves sequents). FOL sequents
are expressions of the form:

Al,...,AnHBl,...,Bm

where Ay,..., A, By, ..., B, are FOL formulae. The intuitive meaning of a FOL sequent
is that a FOL interpretation Z makes a FOL sequent Ay,..., A, — By,..., B, trueift 7
makes true the FOL formula

AN NA DBV VB,

or its equivalent

As it is easily seen, a sequent I' — A is logically equivalent to the conditional I' D A,
however the usage of the — symbol is due to the fact that the implication connective may
occur in any of the formulae in I" or A.

There are two kinds of rules. One includes expressions of the form:

I — A
T=A (4.21)
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having the following meaning: in order to prove the sequent I' — A prove the equivalent
sequent IV — A, which is supposed to be easier to prove. The equivalence between the
two sequents is based on the following property: I' E A if and only if I" E A.

The second type of rules includes expressions of the form:

F/ N A/ F// N A//
T A (4.22)

which has the following meaning: in order to prove the sequent I' — A prove both the
sequents I" — A’ and I — A" which are again supposed to be easier to prove. Also this

kind of rules are such that: I' = A if and only if both IV | A" and I E A”.

The aim of this process of backward reasoning is to proceed until one reaches axioms,
i.e. sequents of the form:

AT — A, A.

An axiom is clearly a tautology.

An example of rule of type (4.21) is:

A B, T'— A
ANB, T — A

(A=)

i.e. in order to prove AN B,I' — A prove A, B,I' — A.
An example of rule of type (4.22) is:

r—-AA I'=AB
r—-AAANB

(=A)

i.e. in order to prove I' = A, AA B prove both I' = A, Aand I' = A, B.

A sequent is provable if, by applying rules, it can be transformed into a set of axioms. For
example, the sequent:

ANBANC — ANB

is provable as the following “deduction tree” shows.

A,B,C A AB,C—B
AB.C > AAB
AANB,C S AANB
ANBAC = AANB

(=)
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i.e. in order to prove AN BAC — AN B, prove AN B,C — A A B. The latter sequent
is provable iff A, B,C' — AABis. A,B,C — A A B is provable since both A, B,C' — A
and A, B, — B are axioms. Therefore, AN BAC — A A B is provable.

Gentzen provability is clearly equivalent to validity, given the semantics of sequents and
the properties enjoyed by rules. In fact, the leaves of the generated deduction tree are
axioms (tautologies) which are equivalent to the original sequent.

4.4.2 A calculus for entailment

We now present a calculus for entailment in ALC4. The main idea behind our approach
is that in order to prove ¥ R «, we attempt to prove the sequent ¥ — a, where ¥ is an
ALC -knowledge base and « is an ALC4-assertion. The modularity of this calculus is due
to the fact that it is sufficient to provide rules for each operator of the language.

First, note that all problems listed below, which are usually considered interesting wrt
TLs, are reducible to entailment.

Let ¥ be a knowledge base.

Subsumption problem: Does a concept €' subsume a concept D ?
Instance checking problem: Does ¥ entail an assertion « ?

Realization problem: Let a be an individual occurring in Y. The set of the most specific
concepts of which a is an instance is defined as

MSCx(a)=A{C | ¥ | Cla], AD such that ¥ |x D[a], D C C and C' £ D}

What is the set of the most specific concepts of which a is an instance ?

Retrieval problem: If C is a concept, what are the individuals @ such that ¥ g Cla] 7

The task of IR can be described in terms of the retrieval problem: each document is
represented by a unique identifier ¢ which is an individual; a document base ¥ is a set
of assertions describing a set of documents; a query ) is a concept, i.e. a document
description. The IR problem amounts to retrieve all documents a which are instances of
the query concept () in X.

As the following lemma shows, also subsumption can be defined in terms of entailment.

Lemma 2 Let C, D be two concepts and a an individual. Then C T D if and only if

{C(a)} r D(a). 1
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Since the retrieval problem, as well as the realization problem, can be reduced to the
instance checking problem, we will concentrate on the latter: i.e. the problem whether
Y | a. Moreover, we can restrict our attention to those ¥ and o made out of concepts in
Negation Normal Form (NNF, for short), without losing generality.

Definition 7 A concept is in Negation Normal Form iff if it contains a concept negation
then it is the negation of a primitive concept. 1

It is easy to see that every concept can be transformed into an equivalent concept in NNF
in polynomial time. Note that in ALC, roles are already in NNF.

Lemma 3 FEach concept can be transformed into an equivalent NNF concept in polynomial
time. 1

In the following we will tacitly consider only assertions involving NNF concepts.

Axioms and rules

Our calculus for entailment in ALC, is defined as follows.

Assume an alphabet of symbols called variables (denoted below by ), disjoint from
the alphabet of primitive concepts, primitive roles and individuals. The alphabet of terms
is the union of the alphabets of variables and individuals (terms are denoted by ¢ and #').
The interpretation function of an interpretation Z is extended to variables by letting -Z
map every variable into AZ. Moreover, variables could appear in ALC, assertions.

Definition 8 A sequent is an expression of the form I' — A, where I' and A are respec-
tively sequences aq, ..., (n > 1) and By,..., By (m > 1) of ALCy assertions. T is called
the antecedent and A is called the succedent. 1

Our aim is to introduce a calculus such that ¥ — « is provable from the axioms and the
rules of the calculus if and only if ¥ |k a.

It should be noted that the semantics of sequents suggests that instead of using se-
quences, we could have used sets. We could indeed define sequents in terms of finite sets
I', A of assertions. For simplicity we will use the same notation for both.

Definition 9 A sequent oy, ...,a, — B1,..., 3, is satisfiable iff there is an interpreta-
tions T such that if T satisfies {aq,...,a,} then T satisfies some 3;. A sequent I' — A is
valid ¢ff all interpretations satisfy I' — A. A sequent I' — A is called falsifiable iff it is
not valid. 1
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For example, the sequent (C'T1 D)(a) — C(a) is valid, whereas the sequent (C'U D)(a) —
C(a) is not (i.e. it is falsifiable). From the above definition it follows that ¥ k= « if and
only if ¥ — « is valid.

The rules operating on sequents fall naturally into two categories: those operating on
assertions occurring in the antecedent, and those on assertions occurring in the succedent.
The application of a rule may cause a sequent to be split into two sequents.

Definition 10 (Axioms) Axioms are sequents of the form

a, ' = a, A
where o is a primitive or negated primitive assertion®. 1

Every rule consists of one or two upper sequents called premises and of a lower sequent
called conclusion. The rules of our calculus are then defined on NNF expressions as follows.

Definition 11 (Rules) The inference rules of the sequent calculus for ALCy are the fol-
lowing:

C(t), D(H),T — A
CAD)t).T = A

(m—)

I' = AC(t) T'—= A,D(t)

o I' = A (CT1D)(1)
(u—) C(t)vr — A D(t),r — A
(CUD)(), T — A
cw L= A,001), D)
I' = A, (CUD))
(— V) I'VR(t,x) — A, C(x)
I' = A (VR.C)()
@ Alz),C@),I = A

GRO)1).T — A

5Note that o could be a generic assertion. The restriction on « is used only for developing easier proofs.
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(VR.C)(t), R(t,#),C(),T — A
(VR.C)(1), R(t,.1),T — A

(mpr —)

where x is a new variable (called also eigenvariable ) which does not appear in the conclusion
of the rules and t,t' are terms. 1

4.4.3 Provability, Soundness and Completeness

Every inference rule can be represented as a tree with two nodes if the rule has a single
premise, or three nodes if the rule has two premises. In both cases, the root of the tree
is labeled with the conclusion of the rule and the leaves (called sons) are labeled with the
premises.

Definition 12 A deduction tree is a tree whose nodes are labeled with a sequent, and is
closed under the rules of Definition 11 in the following sense:

1. every node labeled with a sequent is a deduction tree;

2. for any deduction tree T' whose root is labeled " — A, for any instance of a rule
with premise I'' — A’ and conclusion I' — A, the tree T whose root is labeled with
I' = A and has as unique son the root of T’ is a deduction tree;

3. for any two deduction trees T" and T" whose roots are labeled I" — A" and I — A",
respectively, for any instance of a rule with premises I' — A’ and I — A" and
conclusion I' — A, the tree T whose root is labeled with I' — A and as as sons only
the roots of T" and T", is a deduction tree.

The sequent labeling the root of a deduction tree is called conclusion of the deduction tree.
The depth of a deduction tree is defined as the length of the longest path from the root to
the leaves. 1

Definition 13 A proof tree is a deduction tree whose leaves are labeled with an axiom. 1

Definition 14 A counterexample tree is a deduction tree such that some leaf is labeled
with a falsifiable sequent. 1
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Definition 15 A sequent I' — A is provable, written |~ I' — A, iff there is a proof tree
having I' — A as the conclusion. 1

The proof of a sequent I' — A proceeds backward, by constructing a proof tree with root
I' — A to which the rules are applied until each branch reaches an axiom.

For example, the deduction tree below is a proof tree” with conclusion

(CuD)a),Ea)— (EN(CUD))a) and thus |~ (C U D)(a), E(a) — (ETT(C U D))(a).

C(a),E(a) — C(a),D(a) D(a),E(a) — C(a),D(a)
C(a),E(a) — E(a) C(a), E(a) — (C UD)(a) D(a),E(a) — E(a) D(a),E(a) — (C u D)(a)
C(a), E(a) — (EN(C U D))(a) D(a),E(a) — (EN(C U D))(a)

(CuD)(a),E(a) = (EN(CuUD))(a)

The following proof tree, shows that (VR.AMN B)(a) — (VR.A)(a) is provable.

(VR.AN B)(a), R(a,z), A(z), B(z) — A(x)

(VR.AN B)(a), R(a,z), (AN B)(z) — A(x)

(VR.AN B)(a), R(a,z) — A(x)

(VR.AM B)(a) — (YR.A)(a)

The following is a counterexample tree for the sequent (C'U D)(a) — C(a) and it can be
shown that |£ (C'U D)(a) — C(a).

C(a) = C(a) D(a) — C(a)

(C'U D)(a) — C(a)

"Note that a deduction tree is represented upside down, ¢.e. the root is at the bottom.



4.4. A GENTZEN STYLE SEQUENT CALCULUS FOR ALC, 47

In fact the sequent D(a) — C(a) is falsifiable by any interpretation Z such that ¢ € D*(a?)
and ¢ € CT(a?); note that this also means that {(C' U D)(a)} & C(a).

We are going now to prove the soundness of our calculus: i.e. if the sequent I' — A is
provable then I' — A is valid. The following lemma states the soundness of axioms.

Lemma 4 No axiom is falsifiable. Equivalently, every axiom is valid. 1
The soundness of the rules is established by the following lemma.

Lemma 5 For each rule in Definition 11, the conclusion of the rule is falsifiable iff at
least one of the premises of the rule is falsifiable. FEquivalently, the conclusion of the rule
is valid iff all premises of the rule are valid. 1

Using the two lemmas above, we can prove the soundness of our calculus.
Theorem 1 (Soundness) If a sequent I' — A is provable, then it is valid. 1
A simple corollary gives the soundness of our calculus wrt entailment.

Corollary 1 Let ¥ be a knowledge base and o an assertion. Then |~ ¥ — « implies
Yk a. 1

In order to prove the completeness of our calculus (if the sequent I' — A is valid then
I' — A is provable), we define signed assertions. Let T and NT be two symbols not
appearing in the considered alphabets.

Definition 16 Signed assertions of type a, b, ¢ and d, and their components are defined
as follows (C, D are concepts, R is a role, and t,t" are terms):

o type-a signed assertions:

Assertion Components
o anq (8%

rqenpy)) - TC) - T(D()
NT(CUD)(1) NT(C(t) NT(D())
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o type-b signed assertions:

Assertion Components
B S B2
T({(CUD)

) T(C®)  T(D(R))
t t t

t
NT((CT D)) NT(C(t) NT(D())

o type-c signed assertions:

Assertion Components
2 N 2

T((YRCO))  T(R(,1)  T(C(1))
NT((3R.C)(t)) T(R(t,t)) NT(C(t))

o type-d signed assertions:

Assertion Components
1) 01 62
T(BR.C)1)  T(R(,))  TC))
NT((VR.C)(t)) T(R(t,t")) NT(C(t").

Definition 17 Let a be an assertion. Then T'(«) and NT(«) are called conjugated asser-
tions. 1

We define then satisfaction of signed assertions as follows.

Definition 18 Let Z be an interpretation and o an assertion. Then

T satisfies T'(a)  iff 7 satisfies a
T satisfies NT(«) iff T does not satisfy o.

Definition 19 Let T be an interpretation. The extended language wrt 7 is obtained by
adding to the set of individuals a set of new constants, one constant d for each element d
of AT. The interpretation function % is extended to the new constants by defining:

df =d.

Lemma 6 Let 7 be an interpretation. Then,
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1. for any signed assertion « of type a, T satisfies a iff T satisfies both oy and asy;
2. for any signed assertion 3 of type b, T satisfies  iff T satisfies By or [Bo;

3. for any signed assertion v of type ¢, T satisfies v iff if T satisfies v, then T satisfies
Y2, for every d such that d € AT;

4. for any signed assertion 6 of type d, I satisfies 6 iff I satisfies 61 and 64, for at least
one d such that d € AT. 1

In view of Lemma 6, signed assertions of type a are also called assertions of conjunctive
type, signed assertions of type b are called assertions of disjunctive type, signed assertions
of type ¢ are called assertions of universal type and signed assertions of type d are called
assertions of existential type.

Definition 20 Let H be a subset of terms. A Hintikka set S wrt H is a set of signed
assertions such that the following conditions hold for all signed assertions o, 3, v, 6 of
type a,b,c,d, respectively:

1. HO: No conjugated primitive assertions or conjugated negated primitive assertions
are in S;

2. HI1: If a type-a assertion « ts in S, then both oy and ay are in S;

3. H2: If a type-b assertion B is in S, then either 0y is in S or By is in S;

4. H3: If a type-c assertion v is in S, then for every term t' € H, if y1 ts in S then v,
isin S;

5. HJ: If a type-d assertion ¢ is in S, then there is at least one term t' € H such that
both 6, and 65 are in S. 1

Lemma 7 Fvery Hintikka set S wrt a set of terms H is satisfiable in an interpretation T
with domain H. 1

In order to prove the completeness, our goal is, given a sequent I' — A, to attempt to
falsify it. For this, we will describe the procedure Search (see Figures 4.1 and 4.2) with
the following properties:

1. if the original sequent is valid, the Search procedure stops after a finite number of
steps, yielding a proof tree;

2. if the original sequent is falsifiable, the Search procedure constructs a possibly in-
finite deduction tree, and along some (possibly infinite) path in the tree it can be
shown that a Hintikka set exists, which yields a counterexample for the sequent.
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procedure Search(I' — A: sequent; var T: tree);
begin
Let T be the one-node tree labeled with I' — A;
Let Termsyseq := {((t1,nel), ..., (t,,nil)) and
Termsavgir := (T1, ..oy Ty ..) with t1,...,1, as explained.
while not all leaves of T are finished do
TERM, := Termsygeq; To :=T; FORM;, := FORM g
for each leaf node of 7y do
if not finished(node) then Expand(node, T);
Termspyseq := T FRMy;
FORMygeq := FORM;;
endwhile;
if all leaves are axioms then write(“T is a proof tree of I' — A”)
else write(“I" — A is falsifiable”)
end

Figure 4.1: The Search procedure

Roughly, Search builds a deduction tree, starting from I' — A, applying the rules of
Definition 11, using some lists of terms for handling the z’s and ¢”’s in rules (— V), (3 —),
(— 3) and (mpr —).

Let
Termsysed = (t1y ... tn),

be the list of terms occurring in I' — A, and let

Termsavair = (X1, ooy Ty e v )y

be a countable infinite list of variables not occurring in I' — A.

The terms in Termsirs.q and the variables in Terms 4. are used as the ’s and 2’s
for the application of rules (— V), (3 —), (— 3) and (mpr —).

As the search of a counterexample of I' — A progresses, Search keeps track step by
step of which of (ty,...,¢,, 21,22, x3,...) have been thus far activated. The list of activated
terms is kept in Termsp,.q and the list of available variables in T'erms gpqq-

Every time a rule (— V) or (3 —) is applied, as variable x, Search uses the head of
the list Termsauqi, appends x to the end of Termsp g and deletes & from the head of
Terms gyai-
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procedure Expand(node: tree-address; var T: tree);

begin
Let s=aq,...,

an — B1, ..., Bm be the label of the node;

Let S be the one-node tree labeled with aq,...,ap — B1,..., O;m;
for i :=1ton do
if nonatomic(e;) then GrowLeft(«y, S, s);

fori:=1tom

do

if nonatomic(3;) then GrowRight(5;, S);
T:= dosubstitution(T,node,S)

end

procedure GrowLeft(A: assertion; var S: tree, s: sequent);

begin
caseA of
(C'MD)(t),
(CuD)?)

(VR.O)(1)

(3R.C)(1)

endcase
end

: extend every nonaxiom leaf of S using the
left rule corresponding to the main connective;

: for every term t; € H(Termsyseq)
such that R(¢,¢;) € s and A ¢ FORMy;.q(i) do

extend every nonaxiom leaf of S by applying

the (mpr —) in conjunction with R(t,;);

FORM, (i) := append(FORM, (i), A)
endfor;

: extend every nonaxiom leaf of S by applying the (3 —) rule
using « = head(TERM SAvail) as the new variable;
TERM, = append(TERMy, (x,nil));
TERMSAUGH = tail(TERMSAva“)

procedure GrowLeft(A: assertion; var S: tree);

begin
caseA of
(C'TD)(t),
(CuD)?)

(3R.C)(1)

(VR.O)(1)

endcase
end

: extend every nonaxiom leaf of S using the
right rule corresponding to the main connective;

: for every term t; € {(Termsyseq) such that A € FORMy.q(¢) do
extend every nonaxiom leaf of S by applying the (— 3)
rule using term ¢; as one of the terms of the rule;
FORM, (i) := append(FORM, (i), A)

endfor;

: extend every nonaxiom leaf of S by applying the (mpr —)
rule using @ = head(TERM SAvail) as the new variable;
TERM, = append(TERMy, (x,nil));

TERMSAUGH = tail(TERMSAva“)

Figure 4.2: The auxiliary procedures for Search
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When a rule (— ) is applied, Search uses as terms ¢’ each of the terms ¢;,...,%, in
Termsyseq that have not previously served as terms t' for that rule with same instantiation.

In order to handle the (— J) rule and the (mpr —) rule correctly, it is necessary to
keep track of the assertions (FR.C)(t),(VR.C)(t) and R(t,t;) for which the term ¢; was
used. The main reason is that if a sequent has the property that all assertions in it are
either primitive or negated primitive or of the form (FR.C)(¢) or (VR.C)(¢) such that all
terms in T'ermsyseq have already been used as terms for the above rules and if this sequent
is not an axiom, then it will never become an axiom and we can stop expanding it.

Hence, we structure T'ermspseq as a list of records where every record (t;, FORMyseq(1))
contains two fields: t; is a term and FORMys.q(i) a list of assertions (VR.C')(t) (or
(FR.C)(t)) for which t; was used as a term t’ for the rule (mpr —) (or (— 3)). Ini-
tially, each list FORMuygeqa(t) is the null list. The lists FORMiseq(7) are updated each
time a term ¢’ is used in a rule (mpr —) or (— 3). We also let t(Termspseq) denote the

set of terms {¢; : (t;, FORMyscqa(1)) € Termsusea}-

Finally, a leaf of the tree constructed by the Search procedure is called finished if and
only if either the sequent labeling it is an axiom, or the sequent contains only primitive
assertions or assertions (VR.C')(t) (or (FR.C)(t)) belonging to all of the lists FORMseq(2)
for all (t;, FORMseq(?)) € Termsyseq.

In order to prove the following Lemma 9 we need the so-called Konig’s lemma.

Lemma 8 (Konig’s lemma) If a tree T with infinite nodes is finite branching, then there
is some infinite path in T'. 1

Lemma 9 The Search procedure satisfies the following conditions:

1. If the input sequent I' — A is valid, then the procedure Search halts with a finite
closed tree T which is a proof tree for I' — A.

2. If the input sequent I' — A is falsifiable, either Search halts with a finite counterex-
ample tree T and I' — A is falsifiable in an interpretation with finite domain, or
Search generates an infinite tree T and I' — A s falsifiable in an interpretation
with a countably infinite domain. 1

As a consequence we obtain the completeness theorem.
Theorem 2 (Completeness) If a sequent I' — A is valid, then it is provable. 1

Corollary 2 Let ¥ be a knowledge base and a an assertion. Then |~ X — «a if and only
ifY R a. 1
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4.5 Craig’s “relevant” interpolation theorem

In this section we will present a four-valued version of Craig’s interpolation theorem and
elaborate on its significance to IR.

Craig’s interpolation theorem for FOL [Gallier, 1986] provides an answer to the follow-
ing problem: given a valid FOL formula d D ¢, is there a FOL formula ~ (the interpolant of
d D q) such that d D v and v D ¢ are valid, and v is “structurally similar” to both d and ¢ 7
If the answer is yes then 4 can be seen as an explanation about the retrieval of the document
d in response to the query ¢, because it provides the relevant information which are in d for
it to imply ¢. For example, the interpolant of ANBAC D (AVD)A(CV DV E)is ANC.
Note that not every valid formula has an interpolant. For example, (A D A) D (B D B)
is valid, and yet, no interpolant ~ can be found for it.

In order to prove a four-valued version of Craig’s interpolation theorem, we need some
definitions.

Definition 21 An assertional formula is defined inductively as follows:

1. every assertion is an assertional formula (called primitive assertional formula);

2. if a and B are assertional formulae,then a N3 and aV 3 are assertional formulae. n
Satisfiability is extended to non-primitive assertional formulae as follows.

Definition 22 Let Z be an interpretation.

1. T satisfies an non-primitive assertional formula o A 3 iff T satisfies both o and [3;

2. 7 satisfies an non-primitive assertional formula oV 3 iff T satisfies a or 3. 1

Definition 23 A sequent formula is a sequent in which the antecedent and the succedent
are sequences of assertional formulae. Satisfiability, validity and falsifiability of sequent
formulae are defined in the same way as for sequents. 1

Now we are able to define interpolant in our framework.

Definition 24 Let I' — A be a valid sequent. Then an interpolant of I' — A is an
assertional formula ~ such that

1. I' = ~ is a valid sequent formula;

2. v = A is a valid sequent formula;
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3. every primitive concept, primitive role, individual and variable occurring in ~ also
occurs both in I' and A. 1

The main theorem follows.

Theorem 3 (Four-valued interpolation theorem) I' — A is a valid sequent iff there
exists a constructible interpolant v of I' — A. 1

A direct consequence of this theorem is the following corollary.

Corollary 3 Let X be a knowledge base and o an assertion. If there is no common role
symbol or concept symbol between ¥ and «, then ¥ % a. 1

Note that the corresponding corollary wrt FOL does not hold. For example, in FOL,
A | (B V —B) is valid notwithstanding there are no common predicate symbols between
A and (B V =B). On the other hand, the corresponding corollary is true for the four-
valued logics described in [Levesque, 1984; Patel-Schneider, 1987a; Patel-Schneider, 1986;
Patel-Schneider, 1987b; Patel-Schneider, 1989]

Example 1 Consider the valid sequent (VR.A)(a) — (VR.B)(a),(3R.A)(a) and the fol-

lowing proof tree.

(YR.A)(a),R(a,z), A(z) — B(z),R(a,z), (AR.A)(a) (YR.A)(a),R(a,z), A(z) — B(z), A(z),(IR.A)(a)

(YR.A)(a),R(a,z), A(z) — B(z),(IR.A)(a)

(VR.A)(a),R(a,z) — B(z),(3R.A)(a)

(YR.A)(a) — (YR.B)(a),(3R.A)(a)

The constructed interpolant is (VR.A)(a) which is obtained from the transformation of
R(a,x) N A(x) as described in case rule (— Y)in the proof of Theorem 3. For the valid
sequent (VR.BN D)U (VR.CTI D))(a) — (VR.(BUC)N D)(a), according toTheorem 3,
the following interpolant can be build:

(VR.BN D)(a) V (VR.CTID)(a)
1
This shows that our entailment relation | captures a “structural” relationship between

a document base Y and a query « and thus is a good theoretical basis for a logic-based
approach to IR.
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4.6 Remarks on computational complexity

In this section we present some preliminary observations on the computational complexity
of the instance checking problem for ALC,.

Since ALC,4 contains the operator for conjunction (1), disjunction (L), negation (—)
and since propositional tautological entailment, wrt standard four-valued semantics, is
co-NP-Complete [Patel-Schneider, 1987a], it follows easily that:

Theorem 4 The problem of determining the validity of a sequent I' — A is co-NP-Hard.
[ |

As a consequence,

Corollary 4 The subsumption, instance checking, realization and retrieval problems for

ALCy are all co-NP-Hard. 1

In Lemma 9 we mentioned that the Search algorithm could generate an infinite tree.
In fact, it can be shown that the application of the calculus to the sequent B(a) —
(FR.YR.A)(a) generates the infinite tree:

B(a),R(a,z) — A, A(z), R(a, ) B(a),R(a,z) — A, A(z), (VR.A)(z)

B(a),R(a,z) — A, A(z)

B(a) — A,R(a,a) B(a) — A, (VR.A)(a)

B(a) — A

where A = (FR.VR.A)(a) Each time a new variable = is introduced by the (— V) rule,

x can be used as term ¢’ in the application of the (— 3) rule applied to A, yielding an
infinite generation of variables.

Fortunately, this proliferation of variables can be avoided by adopting more sophisti-
cated halting criteria, described in Appendix B. In fact,

Theorem 5 Determining the validity of a sequent I' — A is decidable. 1

The problem whether or not the validity problem is in NP is open.
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Chapter 5

The FERMI logic

This Chapter merges the results presented in the previous two Chapters into the fi-
nal (single-media, non-probabilistic) FERMI logic MIRLOG, obtained by extending the
TL ALC with individual closures, assertional formulae, and by providing a four-valued,
relevance-based semantics to the so obtained language!. In order to carry out effective
reasoning in MIRLOG, the proof system presented in the previous chapter for the logic
ALC, is extended to handle closure assertions.

5.1 The concept language MIRLOG

In this section we present the syntax and semantics of MIRLOG. From the syntactical point
of view, MIRLOG extends ALC4 with role negation and assertional formulae. Semantically,
closure assertions and assertional formulae are given interpretation in a 4-valued framework.
For the sake of readability, the complete syntax and semantics are presented.

5.1.1 Syntax

We assume two disjoint alphabets of symbols, called primitive concepts and primitive roles.
The letter A will always denote a primitive concept and the letter P will denote a primitive
role. The concepts (denoted below by C and D) and the roles (denoted below by R) of the
language MIRLOG are formed out of primitive concepts and roles according to the following
syntax rules:

!Technically, the name of the logic should be something like “ALC5”, so to follow the naming conventions
adopted in the TL community. However, partly because of the awkwardness of the candidate official names,
partly because we would like to emphasize the context in which the logic has been developed, we prefer to
name the logic “MIRLOG”.

57
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c,D — T | (top concept)
1] (bottom concept)
A | (primitive concept)
CTD | (concept conjunction)
CuUD| (concept disjunction)
-C'| (concept negation)
VR.C'| (universal quantification)
JR.C' (existential quantification)
R —  P| (primitive role)

- P | (primitive role negation)

Furthermore, we assume an alphabet O of symbols called individuals, disjoint from the
alphabets of primitive concepts and primitive roles. Individuals will be denoted by a and

b.

An assertion is an expression of type C'(a) (meaning that a is an instance of ('), where
a is an individual and C' is a MIRLOG concept, or an expression of type R(a,b) (meaning
that a is related to b by means of R), where a and b are individuals and R is a MIRLOG role.
An assertion made out by a primitive symbol is called primitive assertion. An assertion
made out by a negated primitive symbol is called negated primitive assertion.

Assertional formulae (denoted by v and ¢) of the language MIRLOG are formed out of
assertions (denoted below by «) according to the following syntax rule:

7,6 — a | (assertion)
vy A6 | (assertional conjunction)
vV | (assertional disjunction)
~~ | (assertional negation)

An ABoz is a finite set of assertional formulae. A closure is an expression of type Cl(a),
in which « is said to be closed. A CBox is a finite set of closures. An MIRLOG knowledge
base is pair (X,€), where ¥ is an ABox and 2 is a CBox. Note that ¥ will be interpreted
as conjunction of assertional formulae.

Finally, let ¥ be a new symbol, called query parameter, not appearing in any of the
alphabets introduced so far. A parametric assertion, written [o](v), is an assertion in
which v can appear as an individual. A parametric assertional formula, written [y](v), is
an assertional formula in which v can appear as an individual. A query, written [Q](v), is
a finite set of parametric assertional formulae, which will be interpreted as the elements of
a disjunction.

With [a](a), [v](a) and [@](a) we intend the assertion, the assertional formula and the
set of assertional formulae, respectively, in which the query parameter v is replaced by the
individual a. Since the query parameter not necessarily appears in a parametric assertion,
it could be the case that [a](v) = [@](a), for each individual a: e.g. let a be A(b).
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5.1.2 Semantics

The formal semantics of the logic MIRLOG is based on a four-valued semantics. The four
truth values are the elements of 21/}, the powerset of {t, f}, i.e. {t, f}, {}, {t} and {f}.
These values are known as contradiction, unknown, true and false.

Let A be the domain, a countably infinite set of symbols, called parameters and denoted
by p and p’, and v a fixed injective function from O U {r} to A.

Definition 25 An interpretation 7 is a total function such that

1. T maps every concept into a function from A to 265},

2. T maps every role into a function from A x A to 216/, 1

The interpretation function can best be understood as an extension function of two separate
two-valued extensions — the positive extension and the negative extension — defined next.

Definition 26 Let T be an interpretation. The positive extension of a concept C' in T,
wrilten C_II_, is the set of domain elements that are known to belong to the concept, and s
defined as {p € A :t € CT(p)}. The negative extension of a concept C' in I, written CT,
is the set of domain elements that are known not to belong to the concept, and is defined
as {p € A: f € CI(p)}. The positive and negative extension of roles are defined similarly.
[ |

The extensions of concepts and roles have to meet certain restrictions, designed so that
the formal semantics reflects the informal meaning of concepts and roles.

Definition 27 Let Z be an interpretation. The interpretation T has to meet the following
equations for concepts: for each p € A

te(@nD)Y(p) iff teC¥p) andte DX(p)
fe@npy(p) iff feCk(p)orfeD(p)
te(CuD)Y(p) iff teCXp)orte DX(p)
fe(cuby(p) iff feC(p) and fe D(p)

te(=C)Y(p) il feCi(p)

fe(=0Y(p)  iff teCi(p)

te (VR.CY(p) iff Vp' e AteR(p,p) implies t € CL(p))
fe(VRCY(p) iff I € Ate R (p,p) and f € CL(p)
te (AR.CY (p) iff 3 e At e R(p,p) and t € CL(p')
fe(@BRCY (p) iff Vo e Ate R(p,p) implies f € CT(p')
te(=PY(p.p') iff fe€Ppy)

Fe=PY(pp) iff tePlpp)
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Moreover, Tf_ =A, T =0, and J_f_ =0, 1T =A. 1
Observe that, in accordance with the intuitive meaning of the qualified existential operator

3, (AR.C): = (=YR.~C)] and (JR.C). = (-VR.~C)’.

The notion of subsumption between two concepts is defined in terms of their positive
extensions as follows. Given two MIRLOGconcepts C' and D: C' subsumes D (written
DCCO)iff D_II_ C C_II_, for every interpretation Z; C' is equivalent to D, written C' = D, iff
C_lz_ = D_II_, for every interpretation Z. =, = are extended to roles in a straightforward way.

With respect to assertions, we have the following definitions. An interpretation 7
satisfies an assertion a iff t € CT(y(a)) in case a = C(a), whereas t € RT(y(a),v(b)) in
case a = R(a,b). Moreover, T f-satisfies an assertion o iff f € CT(y(a)) in case a = C'(a),
whereas f € RT(vy(a), (b)) in case o = R(a,b).

Satisfiability is now easily extended to assertional formulae as follows.

Definition 28 Let Z be an interpretation.
1. T satisfies an assertional formula v N\ 6 iff T satisfies both v and é;
7 f-satisfies an assertional formula v N6 iff T f-satisfies v or I f-satisfies 6;
7 satisfies an assertional formula vV 6 ff T satisfies v or T satisfies 6;
7 f-satisfies an assertional formula vV 6 iff T f-satisfies both v and 6;

7 satisfies an assertional formula ~ ~ tff T f-satisfies ~;

S

7 f-satisfies an assertional formula ~ ~v tff T satisfies ~. 1

Satisfiability is trivially extended to parametric assertions and parametric assertional for-
mulae?.

Given two MIRLOG assertional formulae v and 0, v is equivalent to 6, written v = ¢, iff
for every interpretation Z, 7 satisfies ~ iff 7 satisfies 6.

Finally, T satisfies (is a model of) an ABox ¥ iff 7 satisfies all assertional formulae in X,
whereas 7 satisfies (is a model of) a query [Q](v) iff T satisfies some parametric assertional

formula in [Q](v). With M(X) we will indicate the set of all models of an ABox X.

Satisfaction of closures is defined on the basis of a notion of minimal knowledge, mod-
elled by epistemic interpretations.

Definition 29 An epistemic interpretation is a pair (Z,W) where I is an interpretation
and W is a set of interpretations. An epistemic interpretation satisfies a closure C1l(a) if
and only if the following conditions hold:

ZNote that v maps the query parameter v into A.
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1. for every primitive concept symbol A, t € AT(y(a)) iff t € AV (y(a)) for all T € W;
2. for every primitive concept symbol A, f € AZ(y(a)) ifft € A7 (v(a)) for some J € W;

3. for every primitive role symbol P and parameter p € A, t € PX(v(a),p) iff
t € P7(v(a),p) for all T € W;

4. for every primitive role symbol P and parameter p € A, f € PL(y(a),p) iff
t & P7(v(a),p) for some J € W.

An epistemic interpretation satisfies (is a model of) a set of closures if and only if it
satisfies each closure in the set. 1

Definition 30 Let (X,9Q) be a knowledge base. An interpretation T satisfies (is a model
of ) (X,) tf and only if T is a model of ¥ and (I, M(X)) is a model of . |

Finally,

Definition 31 A knowledge base (¥,Q) c-entails a query [Q](v), written (X, Q) . [@](v),
if and only if all models of (X,Q) satisfy [Q](v). |

In the following, we will use |~ as the entailment relation with respect to standard four-
valued semantics such that: an ABox ¥ entails an assertion «, written ¥ | «, if and only
if every standard four-valued interpretation satisfying all assertions in X, satisfies also «

(see [Straccia, 1995]).

It is easy to verify that, for any model of a knowledge base (¥, ) and closed individual
a, y(a) is allowed in the positive extension of a primitive concept A just in case A(a) is
entailed by X, in symbols ¥ R A(a) (similar for roles). In other words, closures force
minimal knowledge on closed individuals, ruling out models in which these individuals
show up in undue places.

Terminolgical axioms can be included in the model by adopting the devices already
mentioned in Chapter 4.

Finally, the IR task can be defined in terms of the retrieval problem. Let (¥,9Q) be a
knowledge base, and the retrieval problem defined as

Retrieval problem: Let [Q](v) be a query. What is the set of all the individuals a such
that (3, 9) . [Q)(a) ?

As usual, each document is uniquely identified by an individual d, a document base is a
set of assertional formulae describing a set of documents, a query is a set of parametric
assertional formulae [Q](v) (interpreted as disjunction of parametric assertional formulae),
i.e. possible document descriptions. The IR task is to retrieve all documents d which are
“instances” of the query [Q](v) and is captured by the retrieval problem defined above.
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5.2 Properties of the semantics

This section illustrates the salient features of the logic defined in the previous section; in
so doing, we will restrict ourselves to ALC-concepts, for simplicity. Let us consider the
following example:

Y = {Letter(letter21l),Sender(letter21l, umberto), Italian(umberto)}
0 = {Cl(letter211)}

By virtue of considerations analogous to those developed in Section 3.4, it can be verified
that:

(3,9) k. "Book(letter211),and
(3,9) k. VSender.Italian(letter211).

In particular, in all the models of (¥,9Q), v(Letter211) only belongs to the positive exten-
sion of Letter and, as first member of a pair, to that of Sender. As a consequence and on
the basis of item 2 of Definition 29, in all the models of (X, ), y(1letter211) is not in the
positive extension of Book, but in the negative extension of Book, hence the former entail-
ment relation above. As far as the latter relation, in all the models of (X, ), v(umberto) is
the only parameter to be in the positive extension of Sender as a second member of a pair
whose first element is y(letter211); moreover, in all the models of (X, ), y(umberto)
is in the positive extension of Italian; it follows that, all the models of (X,) satisfy
VSender.Italian(letter211).

Let C be a concept. We will say that C' is quantifier free if and only if no 3,V symbols
appear in C'. Moreover, a knowledge base (X, ) such that all individuals appearing in the
knowledge base are closed, is called completely closed. The following propositions directly
relate to those presented in Chapter 3 on the properties of the =, relation. Their aim is
to show the effects of embedding closures in a four-valued semantics.

Proposition 6 Let (X,Q) be a knowledge base, C1(a) € Q, and C(a) a concept assertion.
Then

1. either (X,Q) k. C(a) or (X,9Q) k. =C(a), for any quantifier free C;
2. 4f (X,Q) is completely closed, then either (£,9Q) . C(a) or (X,9) k. -C(a), for
any C'. 1

Proposition 7 Let (¥,9Q) be a KB and o an assertion C(a) or R(a,b), such that T is a
model of (¥,Q). Then the following hold: if C1(a) € Q then

1. if C is quantifier free, then T satisfies (f-satisfies) o if and only if all models of (X, )
satisfy (f-satisfy) o;
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2. if (X,9) is completely closed, then then T satisfies (f-satisfies) a if and only if all
models of (X,) satisfy (f-satisfy) «, for any C and R. 1

Corollary 5 Let (¥,9Q) be a knowledge base,if Cl(a) € Q and (C' U D)(a) an assertion.
Then:

1. (3,9Q) k. (CUD)(a) iff (X,9) R Cla) or (X,Q) k. D(a), for any quantifier free
C and D;

2. 4f (X,9Q) is completely closed, then (X,9Q) k. (C U D)(a) iff (X,92) k. C(a) or
(2,9) k. D(a), for any C and D. |

We now ask ourselves how c-entailment relates to classical logical entailment, which is
denoted as . The answer to this question is given, as in Chapter 3, in three steps. First,
it is shown that a knowledge base with no closures is equivalent to a set of assertions.

Proposition 8 Let ¥ be a set of assertions. Then an interpretation I is a model of (X,0)
if and only if T is a model of X. 1

Second, c-entailment extends classical entailment, that is & C k. . This relationship is
derived in two steps: next Proposition asserts that | C k..

Proposition 9 Let (X,9Q) be a knowledge base and C(a) an assertion. Then ¥  C(a)
implies (X,9Q) k. C(a).

In order to show that = # k., it suffices to consider the knowledge base (,€) defined
at the beginning of this Section. As it can been shown, ¥ & —Book(letter211), whereas
(2,9) . "Book(letter211).

Finally, the next Proposition shows exactly what is the inferential gain of c-entailment
over classical entailment.

Proposition 10 Let (£,9Q) be a knowledge base and C1l(a) € Q. Then for each primitive
concept A,

1. ¥ e A(a) implies (X,9Q) k. Aa);
2. ¥ A(a) implies (£,9Q) . ~A(a).

Conversely, if (X,Q) is satisfiable, then for each primitive concept A,

3. (3,9) kR Aa) implies ¥ | Ala);
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4. (3,Q) . 7A(a) implies ¥ & A(a).

The same considerations developed for Proposition 5 apply to the last one, mutatis mu-
tandis. In addition, all the above propositions hold for roles, too. For example, we have:

Proposition 11 Let (£,Q) be a knowledge base and C1l(a) € Q. Then for each primitive
role P,

1. ¥ k& P(a,b) implies (3,9Q) k. P(a,b);

2. ¥ Pla,b) implies (¥,Q) . 2 P(a,b).
Conversely, if (X,8) is satisfiable, then for each primitive role P,

3. (3,9) k. Pla,b) implies ¥ e P(a,b);

4. (3,Q) . 7 P(a,b) implies ¥ & P(a,b). 1

5.3 A Gentzen style sequent calculus for MIRLOG

In this section we will present a complete Gentzen-like sequent calculus for entailment in
MIRLOG which extends the one presented for standard entailment in the previous chapter.
The main idea behind our approach is that in order to prove (X, Q) k. [@](v), we attempt
to prove the sequent ¥ —(zq) [@](v), where (X,9) is an MIRLOG knowledge base and
[Q](v) is an MIRLOG query. The modularity of this calculus is due to the fact that it is
sufficient to develop rules for each operator considered.

First, we recall the retrieval problem, defined as:

Retrieval problem: Let [Q](v) be a query. What is the set of all the individuals (the
document’s identifier) d;4 such that (X,Q) k. [Q](diq) ?

We can further restrict to those ¥ and [Q](d;q) made out of assertional formulae in Negation

Normal Form (NNF, for short), as shown below.

Definition 32 A concept C is in Negation Normal Form iff if C' contains a concept nega-
tion then it is the negation of a primitive concept. An assertion is in Negation Normal
Form iff the roles and concepts involved are in Negation normal form. An assertional for-
mula v ts in Negation Normal Form ¢ff if v contains a negation of an assertional formulae
0, then 6 is an assertion in negation normal form. 1
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Now, first note that there are simple relationships between the operators A,V,~ and
M, U, .

Lemma 10 Let ~,0 be assertional formulae and let C, D be two concepts and let R be a
role. Then the following hold:

1. (CND)(a)=C(a) N D(a);

2. (CUD)(a)=C(a)V D(a);

3.~ (YANO) =~V ~ 6

4o~ (YVE) =~ A~ b

Do vy =

6. ~Cla)=-Cla);

7. ~ R(a,b) = ~R(a,b);

8§ ~=C =0C;

9. -—-R = R;
10. ~(CND)=-CU—-D;
11. ~(CuD)=-Cn-D;
12. ~(VR.C)=3R.~C;
13. =(AR.C) =VR.-C. 1

It is easy to see that every assertional formula, assertion and concept can be transformed

in polynomial time into an equivalent assertional formula, assertion and concept in NNF,
respectively. Note that in MIRLOG roles are already in NNF.

Lemma 11 Let C' be a concept, a be an assertion and let v be an assertional formula.
Then there exists an equivalent concept C', an equivalent assertion o and an equivalent
assertional formula ~" in NNF, respectively, which can be derived in polynomial time.

In the following we will consider only concepts, assertions and assertional formulae in NNF.
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5.3.1 Axiom and rules

Our calculus for entailment in MIRLOG is defined as follows. Assume an alphabet of
symbols V called variables (denoted below by ), disjoint from the alphabets introduced
so far. The alphabet of objects, written O, is the union of the alphabets of variables and
individuals, i.e. Ot = OUV, (objects are denoted below by o and ¢o'). An interpretation Z
is extended to the objects such that 7 maps every variable into A and 7 is v on individual
constants.

Variables could appear in MIRLOG assertions, hence in assertional formulae.

Definition 33 Let (X,9Q) be a knowledge base. A (X,Q)-sequent, or simply sequent, is
an expression of the form I' — (s q)y A, where I' and A are respectively sequences y1,..., 9,
(n > 1) and é1,...,6, (m > 1) of MIRLOG assertional formulae. Moreover, each as-
sertional formula of X must appear in I'. 1" is called the antecedent and A is called the
succedent. Finally, if C1l(a) € Q, then I'U A does not contain any expression of the form
R(a,x). |

In order to simplify notation, we will write I' — A in place of I' — g g) A.

The intuitive meaning of a sequent vy,...,v, —(z,0) 61,...,0, is as follows: let 7 be
an interpretation such that (Z, M(Y)) satisfies Q. If 7 satisfies {~,...,7v,} then I satisfies
the query [{01,...,0,}](v), i.c. satisfies some ¢;. Our aim is to show that: ¥ —x gy [Q](v)
is provable from the axioms and the rules of our calculus if and only if (X, Q) k. [Q](v).

It should be noted that the semantics of sequents suggests that instead of using se-
quences of assertional formulae, we could have used sets, e.g. it happens that ¥ C T.
We could indeed define sequents in terms of finite sets I') A of assertional formulae. For
simplicity we will use the same notation for both.

As first, let 7 be an interpretation, let (£,€) be a KB and let 7' be a set of assertional
formulae. We will say that 7 (X, Q)-satisfies T if and only if Z satisfies T' and (Z, M(X))
satisfies Q. Thus, Z (X, Q)-satisfies ¥ if and only if Z is a model of (X, Q).

A sequent I' —(x gy A is satisfiable if and only if there is an interpretations 7 such that
if 7 (X, Q)-satisfies I' then T satisfies some ¢; € A.

A sequent I' — (s g) A is valid iff all interpretations satisfy I' — (g q) A. A sequent
I' =) A is called falsifiable iff it is not valid.

For example, the sequent (C' 11 D)(a) — Cf(a) is valid, whereas the sequent (C' U
D)(a) — C(a) is not (i.e. it is falsifiable). From the above definition it follows easily that
(X,9) ke [Q](v) if and only if ¥ — (5 qy [Q](v) is valid.

The rules operating on sequents fall naturally into two categories: those operating
on assertional formulae occurring in the antecedent, and those on assertional formulae
occurring in the succedent. The application of a rule may cause a sequent to be split into
two sequents.
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Definition 34 (Axioms) Let (X,9) be a knowledge base. Axioms are sequents of the
form

Lol =g oA
2. T g T(0),A;

3. 1 (0),T =z A;

4. T Sma) ~A(a), A if Cl(a) € Q and & Aa),

5. T —w.a) ~Pla,b), A if CL(a) € Q and T & P(a,b),

where o is a primitive or negated primitive assertion®, a,b are individuals and o is an
object. 1

Every rule consists of one or two upper sequents called premisses and of a lower sequent
called conclusion. The rules of our calculus are then defined on NNF expressions as follows?.

Definition 35 (Rules) Let (X,9Q) be a knowledge base. The inference rules of the sequent
calculus for MIRLOG are the following:

rule (A —):
(A —) 7757F _>(E,Q) A
Y A 5, T _>(E,Q) A
rule (— A):
—n Loeody Poeedé
T _>(E,Q) A,"}/ )
rule (V —):
voy Ll 2o A ST —Ea A
Y vV 5, T _>(E,Q) A
rule (— V):

r —(3,0) Ay,
T _>(E,Q) A,"}/ Vo

(=V)

rule (Loi—): if Cl(a) € Q and X & A(a) then

J_ (Cl), F _>(E,Q) A
A(Cl), F _>(E,Q) A

(Le1—)

3Note that o could be a generic assertion or assertional formula. The restriction on « is used only for
developing easier proofs.
*Note that we are not looking for optimization of the rules.



63 CHAPTER 5. THE FERMI LOGIC

rule (Loy—): if Cl(a) € Q then

J_ (Cl), F _>(E,Q) A
A(Cl), _‘A(Cl)7 F _>(E,Q) A

(Le2—)

rule (Lri—): if Cl(a) € Q and ¥ & P(a,b) then

J_ (G),F _>(E,Q) A
P(Cl, b), F _>(E,Q) A

(Lr1—)

rule (Lpy—): if Cl(a) € Q then

J‘ (a)7r —>(279) A
P(a,b),=P(a,b),I' =xq A

(Lra—)

rule (M —):
C(O), D(O), T _>(E,Q) A
(C 1 D)(O), T _>(E,Q) A

(m—)

rule (— M):
F _>(E,Q) A, C(O) F _>(E,Q) A, D(O)
T _>(E,Q) A, (C (I D)(O)

(=)

rule (U —):
C(O),F _>(E,Q) A D(O),F _>(E,Q) A
(C (| D)(O), F _>(E,Q) A

(u—)

rule (— U):
I' =0 A, C(1), D(o)
T _>(E,Q) A, (C L D)(O)

(—=u)

rule (V —):
(VR.C)(t), R(0,0'),C('),I = q) A

V=)
(\V/RC)(t), R(O, 0/)7 F _>(E,Q) A

rule (— V):
( ) Flv —(Z,Q) A75

(= V)
T _>(E,Q) A, (VRC)(O)

1. if Cl(o) € Q then I" is ' U{R(0,2)} and é is C(x);
2. if C1(o) € Q then 6 is given by:

e 6 =Clar)N...NC(ay,) where a; € O, with (¢ > 0), are all the individuals
such that: ¥ e P(o,a;)if R = P, else ¥ & P(o,a;);
e 6= T(o0) otherwise;
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and I is given by:
o IV =T U{R(0,a1),...R(0o,a,)} where a; € O, with (¢ > 0), are all the
individuals such that: ¥ | P(o,a;) if R = P, else ¥ & P(o,a;);

o IV =1 otherwise.

rule (3 —): N
7, I —(3,0)

3-)
(HRC)(O), r _>(E,Q) A

1. if C1(o) & Q then v is {R(o,z),C(x)};
2. if C1(o) € Q then ~ is given by:
o v=(R(o,a1)NC(a1)) V...V (R(0,a,)NC(ay,)) where a; € O, with (i > 0),
are all the individuals such that: ¥ | P(o,a;) if R= P, else ¥ & P(o,a;);
e v =1 (o) otherwise.

rule (— 3):
2 I' =a A, (JR.C)(0), R(0,0') N C()

(—3)
T _>(E,Q) A, (HRC)(O)

where x is a new variable (called also eigenvariable ) which does not appear in the conclusion
of the rules and 0,0 are objects. 1

5.3.2 Provability, Soundness and Completeness

Every inference rule can be represented as a tree with two nodes if the rule has a single
premise, or three nodes if the rule has two premises. In both cases, the root of the tree
is labeled with the conclusion of the rule and the leaves (called sons) are labeled with the
premises.

Definition 36 A deduction tree is a tree whose nodes are labeled with a sequent, and is
closed under the rules of Definition 35 in the following sense:

1. every node labeled with a sequent is a deduction tree;

2. for any deduction tree 1" whose root is labeled I'" —(x qy A', for any instance of a
rule with premise 1" —(y gy A" and conclusion I' — (s gy A, the tree T' whose root is
labeled with I' —(z.0) A and has as unique son the root of T' is a deduction tree;

3. for any two deduction trees T' and T" whose root are labeled I" —(xqy A, and
I — (g0 A", respectively, for any instance of a rule with premises I' — gy A’
and I'"" —(z gy A" and conclusion I' —(z.q) A, the tree T whose root is labeled with
I' —(z.0) A and has as sons only the roots of T" and T", is a deduction tree.
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The sequent labeling the root of a deduction tree is called conclusion of the deduction tree.
The depth of a deduction tree is defined as the length of the longest path from the root to
the leaves. 1

Definition 37 A proof tree is a deduction tree whose leaves are labeled with an axiom. 1

Definition 38 A counterexample tree is a deduction tree such that some leaf is labeled
with a falsifiable sequent. 1

Definition 39 A sequent I' —(x gy A is provable, writlen ~. I' — (g q) A, iff there is a
proof tree of which it is the conclusion. 1

We are going now to prove the soundness of our calculus: i.e. if the sequent I' =z o) A
is provable then I' — (s ) A is valid. The following lemma is easily verified.

Lemma 12 No axiom is falsifiable. Equivalently, every axiom is valid. 1

The soundness of the rules is proven by the following lemma.

Lemma 13 For each of the rules in Definition 35, the conclusion of a rule is falsifiable iff
at least one of the premises of the rule is falsifiable. Fquivalently, the conclusion of a rule
is valid iff all premises of the rule are valid. 1

Using the two lemmas above, we are ready to prove the soundness of our calculus.
Theorem 6 (Soundness) If a sequent I' — (5 .q) A is provable, then it is valid. 1

A simple corollary is the soundness of our calculus wrt entailment.

Corollary 6 Let (3,9Q) be a knowledge base and [Q](v) a query. Then |~. ¥ —x.qy [Q](V)
implies (X,9Q) k. [Q](v). 1

We are going now to prove the completeness of our calculus: i.e. if the sequent I' —(x g)
A is valid then I' — (g o) A is provable.

We begin with signed assertional formulae. Let T and F' be two new symbols not
appearing in the considered alphabets, and consider the extended language wrt A which is
obtained by adding to the set of individuals a set

{plpeA}

of new constants, one for each element of A. ~ is extended to the constants in the set
{p |p € A} by defining
v(p)=p
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Definition 40 Signed assertional formulae of type a, type b, type ¢ and type d and their
components are defined as follows (C,D are concepts, R is a role, 0,0" are objects, and

v, 6 are assertional formulae):

type-a signed assertional formulae:

v T Y2
ri(cnpbio))  T(Clo))  T(D(o))
NT((C'UD)(o)) NT(C(o)) NT(D(0))
T(yA6) I'(y) 7(s)
NT(~ V) NT(7) NT(6)
e type-b signed assertional formulae:
o g %
((C D)(O)) T(C(O)) T'(D(o))
NT((C 1 D)(o)) NT(C(o)) NT(D(0))
T(yvé) T(y) 7(é)
NT(~vA6) NT(7) NT(6)
o type-c signed assertional formulae:
vc g 72
T((VR.C)(0))  T(R(o,0")) T(C())
NT((3R.C)(0)) T(R(o,0)) NT(C())
o type-d signed assertional formulae:
7 W

Let v be an assertional formula. Then T'(v) and NT(v) are called conjugated signed
assertional formulae.

We define then satisfaction of signed assertional formulae as follows. Let Z be an
interpretation and v an assertional formula. Then 7 satisfies T'(7) iff Z satisfies v, whereas

7 satisfies NT'(v) iff Z does not satisfy 5.
The following lemma holds.

Lemma 14 Let T be an interpretation. Then:
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1. for any signed assertional formula v* of type a, T satisfies v* iff T satisfies both ~{
and 74

2. for any signed assertion v° of type b, T satisfies v* iff T satisfies 72 or +5;
3. for any signed assertion ¢ of type ¢, T salisfies v¢ iff if T satisfies v{ then I satisfies
7S, for every p in place of o';

4. for any signed assertion 4% of type d, T satisfies v iff T satisfies v and ~, for at
least one p in place of 0. 1

Signed assertional formulae of type a are also called assertional formulae of conjunctive
type, signed assertional formulae of type b are called assertional formulae of disjunctive
type, signed assertional formulae of type ¢ are called assertional formulae of universal type
and signed assertional formulae of type d are called assertional formulae of existential type.

In order to prove the completeness we will use Hintikka sets.

Definition 41 Let H be a set of objects. A Hintikka set S wrt H is a set of signed asser-
tional formulae such that the following conditions hold for all signed assertional formulae
v, 40, A8, 4% of type a,b,c,d, respectively:

1. HO: No conjugated signed primitive assertions or conjugated signed negated primitive
assertions are in S. Moreover, neither T(L (a)) nor NT(T(a)) are in S;

2. Hi: If a type-a assertional formula v* is in S, then both v and v§ are in S;
3. H2: If a type-b assertional formula v* is in S, then either 4% is in S or 45 is in S;

4. H3: If a type-c assertional formula ¢ is in S, then for every object o' € H, if 77 is
in S then 45 is in S;

5. Hj: If a type-d assertional formula 4% is in S, then there is at least one object o' € H
such that both ~{ and 3 are in S. 1

Lemma 15 FEvery Hintikka set S wrt a set of objects H is satisfiable. 1

In order to prove the completeness, our goal is, as in Chapter 4, to attempt to falsity
the given sequent. To this end, the procedure Search presented in Section 4.4.3 can be
applied, with the only care of modifying its auxiliary procedures GrowLeft and GrowRight
so to have them handling all the rules of the present calculus, as they are specified above.

Lemma 16 The Search procedure satisfies the following conditions:
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1. If the input sequent I' —x ) A is valid, then the procedure Search halts with a finite
closed tree T which is a proof tree for I' — (s q) A.

2. If the input sequent I' —(z qy A is falsifiable, either Search halts with a finite coun-
terexample tree T and I' —(z gy A is falsifiable, or Search generates an infinite tree

T and ' —(z .0y A is falsifiable. 1
As a consequence we obtain the completeness theorem.
Theorem 7 (Completeness) If a sequent I' — (5 .qy A is valid, then it is provable. 1

Corollary 7 Let (3,9Q) be a knowledge base and [Q](v) a query. Then |~. X —x.q) [Q](V)
if and only if (X,9) k. [Q](v). 1

5.4 Craig’s “relevant” interpolation theorem
In this section we will extend the material presented in Section 4.5 to the present framework.

Definition 42 Let I' — oy A be a valid sequent. Then an interpolant of I' —x gy A is
an assertional formula v such that

1. I' —=(s,q) 7 is a valid sequent formula;
2. v =0 A is a valid sequent formula;

3. every primitive concept A occurring in 7y,

(a) occurs both in I' and A, or
(b) A occurs both in v and A in the form —=A(a), if Cl(a) € Q and X & A(a);

4. every primitive role P occurring in 7,

(a) occurs both in I' and A, or
(b) P occurs both in v and A in the form —~P(a,b), if C1l(a) € Q and ¥ & P(a,b);

5. neither L nor T appear in ~. 1
Now we are able to formalize the main theorem.

Theorem 8 (Four-valued interpolation theorem) I' —(x o) A is a valid sequent iff
one of the following cases hold:
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1. there exists a constructible interpolant v of I' —x ) A;
2. T is not (X, )-satisfiable;

3. (Vsea) = T(a), for some a. 1

Inspecting the structure of 4, v can be seen as the part of relevant information which
is in (3,9) in order to answer the query [Q](v), i.e.the interpolant can be seen as an
“explanation” of the query. That is, in order (¥,Q) k. [Q](v) to hold, the structural
components of [Q](v) must have an analogue in ¥, modulo MPR, or [Q](v) contains the
negation of primitive concepts and roles not entailed (by means of ) by X.

Also relevant to IR, is the fact that interpolants can be used for user relevance feedback
purposes. The basic idea is to let the user classify the documents returned by a query
into one of the categories: “relevant”, “non-relevant” and “I-don’t-know”. The system
uses this information to generate a new query, constructued by using the interpolants
of the documents calssified as relevant. The result of the new query is guaranteed to
include the documents classified as relevant and not to include the documents classified
as non-relevant. On the I-don’t-know documents, the query acts as a filter, retaining only
those that bear some similarity with the relevant ones. The mechanism can be extended
to consider as I-don’t-know documents all the documents of the document base, other
than the relavent and the non-relevant ones, to be I-don’t-know documents. Our state of
knowledge on both these mechanisms is still incomplete. We plan to investigate the effect
of the described filtering device in the next future, taking into account the considerations
on relevance dynamics presented in the next Chapter of the present document.

Let (¥,9) be the document base and [Q](v) be a query. Let AS((X,Q),[Q](v)) be the
answer Set wrt (X,Q) and [Q](v), defined as:

{d:(%,9) ke [QN(d)}

and 4 be an interpolant of [Q](d). Suppose now that the user selects two disjoint sub-
sets of AS((X,0),[Q](v)), Surrs, the User Relevant Feedback Set, and Syrrps, the User
IrRelevant Feedback Set, as those documents relevant and non-relevant to her purposes, re-
spectively. Given (Syrrs, Suirrs), a new query, called filtering query, can be constructed
by means of the User Feedback Representation function, fyrpr, which takes into account
the user’s relevance judgement.

Let v be an assertional formula and let v[o/0'] be the assertional formula obtained from
v by substituting object o with o’. Let [yg](v) and [y;r](v) defined as follows:

balv) =\ qld/v]

d€ESURFs

bilv) =\ qald/v]

d€SUIRFS
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[vr](v) is intended to represent the user’s relevance, whereas [y;g](v) purports at modelling
the user’s irrelevance feedback. If we would like that the new answer set includes the
documents identified by Sygrrs and will not include documents identified by Syrrps, we
must check if (Surrs, Suirrs) is safe, i.e. that there is no d € Syrps U Surrps such that

(3, Q) e [vrI(d)A ~ [v1r](d)

This last condition ensures that there is no document involved in the user’s feedback which
are both relevant and not relevant.

Now, the filtering query can be defined as:

forr(v) = [QI(d) A yrl(W)A ~ [yir](v)

which acts as a filter to the set AS((X,),[@](v)), in the sense that its answer set will be
a subset of AS((X,0Q),[Q](v)).

Note that fypgr(d) is such that a document d is retrieved from a document base if
and only if d satisfies some of the user’s relevant feedback information Sygrps (condi-
tion Viesy pps v4) and all of the user’s irrelevant feedback information Syjrrs (condition
(/\dESURFs ~ ’}/d))‘

It we want the filter to apply to the whole document base, we must adopt the following
filtering query:

forr(v) = [yrI(W)A ~ [yir](v)

Of course, the full impact of Theorem 8 to relevance feedback purposes needs further
investigations.



76

CHAPTER 5. THE FERMI LOGIC



Chapter 6

Conclusions

We have presented MIRLOG, a four-valued terminological logic for information retrieval,
allowing closure assertions and complex assertional formulae. The logic builds on existing
results in the area of knowledge representation; in particular, the syntax and semantics
of terminological logics have been extensively used in the definition of MIRLOG, as well
as some previous work on relevance terminological logics. However, despite the fact that
it has been conceived in an information retrieval setting, MIRLOG makes, to the best of
our knowledge, several contributions to the research on logical formalisms for conceptual
modelling:

o closure assertions represent an original approach to the problem of endowing a logic
with a fully controlled form of closed world reasoning;

e the particular four-valued semantics adopted for MIRLOG is novel and overcomes
inferential limitations of previous approaches;

o the calculus for performing retrieval of MIRLOG documents is new, and seems a very
promising direction for unifying reasoning on terminological logic both with a two-
and a four-valued semantics.

The whole model is an original contribution to logic-based information retrieval modelling,
with a special mention for the idea of using Craig’s interpolants for modelling relevance

feedback.
The next points on the MIRLOG agenda are now: evaluation and extension.

Evaluation will take place both at the theoretical and practical level. Theoretically, we
plan to further investigate the properties of the model, in the vein of the work presented
in Section 5.2, and also at the computational level, by trying to classify the complexity
of the retrieval problem. Practically, we plan to develop a prototypical retrieval engine
implementing the calculus given in Section 5.3. The latter activity is part of the FERMI
agenda, as well as is the experimentation of the obtained model on a realistic application.

77
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As far as extension is concerned, we are well aware of the fact that the model described
in this document is only the logic kernel of a realistic information retrieval system. Two
importants directions of extension are foreseen in the context of FERMI in the next fu-
ture. First, the inclusion in MIRLOG of uncertainty. Second, the development, on top of
MIRLOG, of a multimedia information retrieval model. Needless to say, both these ex-
tensions will bring MIRLOG much closer to the reality of present and future information
retrieval systems. Nevertheless, there are several interesting issues that need be addressed

beyond those specifically identified by FERMI.

One of the advantages of the terminological model of information retrieval is that it
can profit of the many research results obtained in the field of terminological logics. In
Appendix A we review the many extensions to terminological logics that may be of interest
to the present context.
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Chapter 7

A Study Of System And User

Relevance In Information Retrieval

Information Retrieval systems are based on a notion of relevance of documents for a given
user’s need expressed by a query in a given formalism. In this document, we propose to
formalize some basic IR notions. This formalization must be a kind of specification of
what should be an IR system from our point of view. We propose in the last section a
partial instantiation of our approach in a modal logic. This paper ends by an example that
illustrates the use of this logic.

7.1 Introduction

The scope of IR (Information Retrieval) is to design systems able to provide information
to users who are expressing their information needs using query languages in the context
of suitable man-machine interactions. Answers are in the form of documents that suit
the users’ needs. This is the classical notion of relevance [Cooper, 1971] related to the
usefulness of a document for a user.

An IRS (Information Retrieval System) is a tool that helps the user in selecting docu-
ments as supports of information, and not the needed information itself. The human user is
the only ultimate judge about the relevance of what is retrieved by the system, compared
to his needs. By this, we mean that the satisfaction or un-satisfaction of the user at the
end of a retrieval session is the only fact we must take into consideration. Hence, the
main problem of an IRS is approximating this notion of relevance by imitation. System
computes relevance measures using data extracted from documents that are called index,
using user’s need expression that is called query and using a matching function between
index and query that retrieves and ranks documents.

The objective of task T13 “Modeling the relevance of retrieval“ is to investigate sev-
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eral possible ways for implementing the main underlying idea of logic-based information
retrieval: a real document d is relevant to a real need (a query) ¢ iff d somehow implies
q. This implies first to find, among the notions of implication (“—”) which are formalized
by different classes of logics, the one that is most suitable for modeling the relation of
relevance of a document d to a query ¢ in terms of the validity of the formula D — (),
where D and () are respectively models of real objects d and g.

Classical logics are obviously inadequate (one would say: only partially adequate) to
cope with this problem. Some main reasons for that may be listed: the necessity to
integrate an uncertain evaluation of this implication, the necessity to cope with partial
models of documents and queries, the fact that the material implication is obviously too
limited. So we are deemed to investigate a number of “non classical” logics that express
more closely the “natural” behavior of the relevance relationship.

At this phase of the project, and before opting for the study of a given logic, it seems
useful to investigate some basic aspects which are of prime importance when considering

IR and Logics.

In this paper, we investigate the underlying concepts hidden behind the IR notion of
relevance and we propose for that to formalize these notions. We analyze in more details
why we think that this notion of relevance is related to logic in a natural way, and we
explain why, in our opinion, relevance is inherent to the notion of modality. This will
in turn lead us to investigate the possible use of modal logic to express the relation of
relevance.

This approach will raise the problem of defining what is relevance, what is a query, and
what is considered as information in documents. We present in the following some basic
facts, hypotheses and definitions that we will use to ground our modal model for IR.

7.1.1 Information and document

It we consider any real document d as a signal that supports a certain amount of informa-
tion, the user of an IRS can be viewed as the receptor of this signal. He is able to decrypt
the signal using his knowledge to extract from it some useful information. That information
can then be transformed into some new knowledge, if it is relevant to his needs.

When the user asks for information, he submits a query to the IRS. This query usually
expresses information that is related, or about, what he is searching for. Queries ¢ are
supposed to reflect the topic the user is interested in. The role of the IRS is to compare
the representation () of the query ¢ to some information D extracted from documents d.
We call this information D an “index”, because it mainly serves to select documents. Since
the users’ needs are more focused on global topics of documents, than on detailed contents.
So an IR index is mainly meant to capture documents’ topics.

Classical systems are keyword-based and therefore automated extraction of keywords
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can be considered as a very raw and unstructured description of the information contained
in the signal associated to a document. We are convinced that the only way of improving
an IRS is to extract more information from the signal, and to give it an adequate structure.
The key point then is the amount of information we need and in which directions (or facets)
we must extract these information, to improve results. In that context, the information
facets are points of view taken by the receptor of the signal (i.e, the men which read the
document). Depending on the way the reader looks at a document and depending on his
knowledge, he will read different information. This fact is even more obvious when one
considers pictures or videos as documents. We want to consider a general IR model that
includes this user behavior.

Before going further on logical model for IR, we want to investigate more closely the no-
tion of relevance. We will propose some basic hypothesis used as postulates when designing
new models and derived new IR systems.

7.1.2 The IR notion of relevance

All TR systems offer a matching engine that selects an amount of documents related to
a query. All these systems hence are based on the implicit assumption of relevance and
try to implement it through matching functions. The notion of relevance is not obvious
and it is often compared to the notion of topic relevance [Green, 1995a; Green, 1995b], it
is also presented as an aboutness relation [Marron, 1977] or as a utility relation [Cooper,
1971]. Saracevic in [Saracevic, 1976] concluded that various definitions of relevance fell
into a general pattern that expresses different notion of relevances : a A of a B existing
between a C and a D as determined by E. Slots can be filled by :

A measure, degree, dimension, estimate, appraisal, relation;

v

correspondence, utility, connection, satisfaction, fit, bearing, matching;

Q

document, article, textual form, reference, information provided, fact;

o

query, request, information used, use of information, point of view, information re-
quirement statement;

E person, judge, user, requester, information specialist.

He raises different aspects of the relevance notion: one of it is the notion of judgment
of a given person following a particular point of view. He also mixes the notion of user’s
relevance and system’s relevance. One of our goals in this work, is to provide an underlying
basis for the study of relevance by defining hypothesis and definitions of relevance in order
to explore different interpretations of this notion, and so to define guidelines for the design
of IRS. We use the notion of user’s relevance versus system’s relevance and we introduce
the notion of point of view on the user and system side within the facet notion. We also
deals with the notion of a retrieval session by introducing time in our modelization.
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7.2 User relevance

We make a distinction between the notion of abstract relevance judgment that is used in test
collections and user’s relevance judgment or actual relevance judgment that a user provides
when he is consulting some documents retrieved by a system. Relevance judgment of a user
must be understood as a reaction of this person after reading a document. For example,
this situation occurs when a person is looking for a document in a real library: he consults
manual indexes, moves around, takes some books, reads quickly some of them, and in the
good case keeps a few books that are about what he is searching for.

In an IRS, the system is supposed to guide the user through a sort of virtual library
but with an initial need expressed in some language. We could imagine systems without
any initial query at all whose role would be only to present books to the user and helps
him like a human library assistant. This is not the case at the moment and the system
has to start from an initial definition of the users’ needs. Then it proposes a selection of
documents to users who partially consult them and express in return what they think about
this document selection. The users have to estimate the outputs from the system which in
turn takes into account his agreements or disagreements about the retrieved documents.
This is called user relevant feedback. In the following paragraphs, we present requirements
needed to formalize the notion of relevance and the way it is used in an IR model to build
a system.

7.2.1 Basic hypothesis

Let d be a real document and ¢ be the initial user need. We suppose users to be able
to declare that a document is relevant or not, or to declare that he does not know about
the relevance of a document. This hypothesis is both fundamental and debatable. It is
fundamental because if we try to modelize this relevance notion then we have of course to
suppose its existence. It is debatable because in practice, relevance is a subjective notion in
the sense that it depends on the subject (i.e. the user) which gives it a value. It depends
on the user’s knowledge of d, on his own general knowledge, and on the precision with
which he defines his own need ¢. Moreover, one cannot guarantee that his need will be
both precise and stable in time within a retrieval session.

Hypothesis 1 (Existence of user relevance) We admit that there could exist a rela-
tionship between d and q that the user call “relevance”. This notion is not absolute but
relative to a given user.

In the same way we propose to examine the fact that a user can know and express that
a given document is not relevant to his needs.
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Corpus

Figure 7.1: Abstract user relevance

Hypothesis 2 (Existence of user irrelevance) We admit that there could exist a rela-
tionship between d and q that the user call “irrelevance”, this notion is relative to a given
user.

Definition 1 (Abstract user relevance) If a user could know all the documents of the
corpus, he would be able to decide whether a document is relevant or not to his information
needs. Then we obtain an “ideal” partition of the corpus that we would call abstract user
relevance.

Let C be the corpus of documents, Rel(C, q) the documents relevant in an abstract way
and Rel(C, q) the document irrelevant also in an abstract way. Then we have :

C = Rel(C, q) U Rel(C, q)
Rel(C,q) N Rel(C,q) =0

In actual situations, a user cannot always decide whether a document he is looking
at satisfies his needs or not. Sometimes, he cannot decide, because in practice he would
have to read the document in more details to have a correct opinion about this document.
All in all, his decision takes place only for documents he his able to look at. That’s why
we distinguish abstract and actual user relevance. In the next part, we discuss this
notion of relevance.

7.2.2 Characteristics of actual user relevance

We introduce now this notion of actual user relevance with a notation.

Definition 2 (Actual user relevance) The user relevance or irrelevance judgment about
retrieved documents obtained from his need q is called actual user relevance, and is noted
R, (u) for relevance judgment and R,(u) for irrelevance judgment.
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An important aspect we must take into account is the tzme during which the retrieval
session occurs. The users’ decision about relevance may change along the session, and
also his information need may evolve in the same time. All these changes are triggered by
the interactive process of the session during which the user consults proposed documents
and input relevance judgments to the system. In our opinion, the well-known process of
relevance feedback would thus have to be revisited in the context of a time dependant
interaction.

As a consequence, we propose to stamp relevance relation with time value. At the
beginning of a retrieval session, the user may not be able to assert the relevance of some
document because the system had not show them yet. So the actual relevance relation must
be three valued: user knows that a document is relevant, or he knows that a document is
not relevant, and finally he could have no opinion about this relevance.

Hypothesis 3 (Actual relevance and time) Actual relevance is time related and is
noted R,(t,u) and represent the set of relevant documents selected by a user u at time
t for a need q. Actual irrelevance is noted R,(t,u). The time t is a discrete integer and
correspond to the time when user new input is taken into account by the system for a new
computation.

For example, time ¢ = 0 corresponds to the time where the initial query is submitted
to the system whereas time ¢ = 1 corresponds to the time when the system has shown the
result of its first computation and the user has express his first relevance feedback. Notice
that these time values do not reflect real time but only a chronology of events. At the
beginning of the session (at ¢ = 0) the sets R, (¢, ) and R, (¢, u) are empty.

Actual user relevance is the set of all documents judged as relevant during all the

session.

Ry
Ryl

u) = Ut&(t, )
u) = U Ry(t; u)

We also think that there could exist at the same time different points of view from
which a user can estimate the relevance value of the system’s answer. These points of view
are related to the document itself and correspond to different visions of a document. For
example, one can consider shapes, colors, emotional content, (etc) of an image.

We call facets these different elements found in documents. In multimedia documents,
facets are easily understandable. For example, in a picture there exists the physical facet
that deals with physical aspect like color, or light; there exists also the geometrical facet
that deals with lines, surfaces, etc.

Hypothesis 4 (Actual relevance and facet) Actual relevance is facet related and is
noted R,(t,f,u). This represents the set of relevant documents selected by a user u at
time t for a neep q and according to a particular facet f.
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7.2.3 Time dependant properties of actual relevance

We call corpus the collection of all documents which we will note C. The set R, (¢, f, u) of
all documents relevant to a need ¢ is defined by:

R,(t,f,u) ={d €C|dis relevant to ¢ for a given time ¢ and a given facet f dedicated
to a specific user u}

The set R,(t,f,u) is the set of all irrelevant documents of the corpus:

R, (t,f,u)={d € C| dis irrelevant to ¢ for a given time ¢ and a given facet f dedicated
to a specific user u}

Hypothesis (1) and (2) introduce the basic notion of relevance and irrelevance. We
complete them by the following hypothesis.

Hypothesis 5 (Absence of user judgment) We admit that there could exist documents
neither relevant or irrelevant to a need q given a user u.

We note U, (t,f, u) the set of these documents. The hypothesis (1) (2) and (5) can be
expressed by the partition of the corpus C in three sets:

C=R,(t [, u) UR_q(t,f, w) U, (L, [, u)

Our notion of facet is linked to the notion of relevance in the following way: if a user
judges a document both relevant and irrelevant at the same time, we understand this by
the fact that this user has taken two different point of view for his judgment. Hence for a
given facet we think the user’s judgment must be consistent.

Hypothesis 6 (Static consistency) At a time t, for a facet [ and for a user u, there
is no document judged both as relevant and irrelevant: R,(t,f, u) "R, (t,f,u) =0. The
user’s judgment is said to be statically consistent at this time and for this facet.

As user cannot obviously expresses both some judgment (of relevance or irrelevance) and
no judgment at all, and with hypothesis static consistency (6), existence of user relevance
(1), existence of user irrelevance (2), and absence of user judgment (5) we can establish
the following.

Ro(tfou) NRy(Efu) VUt fru) =0
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In a “normal” session, users can only discover new relevant documents in addition to
those previously judged as relevant. So a change of relevance judgment during time is
interpreted as an user error.

For a given document d and a given user u, and for two times t; < t,, possible evolutions
are:

1. Ifd eU,(t;,f,u), and later d € R,(ts,f,u) or d € R,(ts,f,u): this means that at
t; the user does not know the relevance of d, but he has made a judgment at ¢;. For
example, he could discover the document, read it and then have an opinion about it.

2. fd € R,(t;,f,u)and d € R, (to,f,u), or d € R,(t;,f,u) and d € R,(ts,f,u): in

this case, the user simply change his mind about the document.

3. fdeR,(t;,f,u)or d € R,(t;,f,u) and later d & R,(t2,f,u) and d & R, (L2, f,u),
this means that the user either has forgotten a judgment or that he is confused and
does not know the right judgment about document d.

Aside situations where at time t, a document remains in the same class as it was at
time t;, these are all the possible evolutions based on this temporal approach. We propose
now to describe some characteristics to qualify the evolution of relevance judgments in
time.

During a retrieval session, when the user states some relevance judgment and do not
change his mind times after, we say his judgment is stable over time. Moreover, we say
that the user judgment is consistent when he does not state a relevance judgment at time
t; and its opposite judgment later at time ¢5 for the same document.

Definition 3 (Stability of relevance judgment) Fort; < o, if
Ry(ti,fou) SR (ta, f, u) then we say that the user relevance judgment is stable.

Definition 4 (Stability of irrelevance judgment) Fort; < to, if
R, (ti,f,u) SR, (Lo, f,u) then we say that the user irrelevance judgment is stable.

If the user judgment is not stable, then it is desirable that it will be at least consistent
on time. This means that if a positive judgment is made at a certain time, then this
judgment can only be revised to become unknown, but it cannot be transformed into a
negative judgment.

Definition 5 (Dynamic consistency) For t; < ty, if R,(t;,f,u) N R, (te, fru) = 0,
then we say that the user judgment is consistent over time.

The definitions (6), (3) and (4) imply definition (5). The reverse implication is false.
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7.2.4 Facet dependent property

Some facets can be related in the relevance relation. For example, the facet that deals
with the represented shape of an image is related to the facet that deals with the symbolic
view. We propose at this time, only one case of facet-dependant property.

Definition 6 (Facet dependence) For two different facets fi, fo at time t where

Rq(tvffvu) N Rq(t7f27 u) # 0

then these two facets are declared relevant-dependant at this time. Otherwise they are
declared relevant-independent facets.

7.2.5 Order of relevance

In most existing systems, retrieved documents are ranked by relevance. It is assumed that
a user is able to distinguish documents that are more relevant than others. Relevance
decisions may be based on very different reasons because the user may be interested in
different aspects of the document.

In [Yao, 1995] Yao introduce several notions of user preference using the relation >

defined as:
For d,d € C, d = d' <= the user prefers d to d'.

This relation is called a strict preference relation and is defined as a subset of the
Cartesian product C x C. This preference relation is partial: some documents d and d’ may
be incomparable because it “does not make sense to compare them from the user point of
view”, says Yao. He introduces the indifference relation ~ defined as:

d~d <= (=(d > d)N—(d = d)).

We can instantiate these two relations with our formalism in the way suggested in [Yao,
1995]. At a time ¢, considering a facet f and a user wu:

d>=id < (deR,(t,fiu)Nd € R,(t,f,u))
dryd = (=(d = d)) N (=(d = d))
Which is:

drnd = (d ¢ R(1], )V d ¢ Ry (4]. ) A(d ¢ Ry (1S u) v d & Ry(1,] . 0))



90 A Study Of System And User Relevance In IR

This means that two documents are indifferent in the sense of this relation, if they are not
judged one relevant and the other irrelevant.

This definition supposes the use of the standard two-valued relevance scale. For a
m-valued scale of relevance we have the following choice:

1. We split the set of document C into m classes R, (¢, f, u); each of which expressing
a degree of relevance and the set noted U, (¢, f, u) expressing the class of documents
that are indifferent to the user:

C= URq(tvau)i UU,(t, f,u)

2. We split the set of document C into m — 1 sets : R, (¢, f, u);, plus the set of irrelevant
documents R, (¢, f, u) and the set of un-judged documents U, (¢, f, u). In that case
the preference relation has a meaning only in the set R, (¢, f, u).

C= URq(tva u); U R—q(tva w) YU (L, f,u)

The first approach only expresses some degrees of relevance: irrelevance is not explicitly
expressed. We prefer the second approach because it makes a clear distinction between
what is relevant, and what is not relevant. Moreover, this allows to state that the user
does not wants a given collection of documents to be retrieved later by the system.

As times becomes a parameter of the retrieval process, we include time into the prefer-
ence relation. Facets of documents are associated to points of view a user can have about
a document. It seems also important to include the facet notion into the definition of
relevance.

Definition 7 (Set of relevant documents) We note R, (¢, u) the set of relevant docu-
ments for at least one facet at time t and for a user u:

R (t,u) =Us Ry(t, f,u)

Hypothesis 7 (Relevance pre-order) There exists a partial pre-order on relevance: at
a time t, and for a user u, the set R,(t,u) is partially pre-ordered.

Users are more interested in document that are relevant to their queries than in docu-
ments considered as irrelevant. Consequently the relevance order is more important than
the irrelevance order which can be useful for the system but not for the user. At least, the
user could express he does not want the system to retrieve again a given document because
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he knows it already well. This is one reason why it is important to take into account the
irrelevance user judgment.

Under this hypothesis, it is assumed that a user is able to decide whether a document
is more useful or more relevant than another document. The pre-order means that this
relevance judgment is a reflexive and transitive relation on documents. This order cannot
be total because there could exist documents that are not comparable from the user’s point
of view.

This order is not antisymmetrical because of the facet notion: there exist documents
that are symmetrically ordered: dy = dy and dy = dy. This means that the user has
different points of view to rank documents according to two different facets. We can also
use this notion to define the notion of facet using the preference order.

Hypothesis 8 (Facet existence) Given a user u at time t, for two documents dy, dy,
when the user both ranks dy = dy and dy = dy then we explain this situation by the fact
that there exists two different facets fi and fy, the user has used to differently rank the
documents : dy >y, dy and dy >y, dy.

Using this hypothesis, for a given facet, the relevance pre-order is antisymmetric and
thus is an order.

Hypothesis 9 (Facet relevance order) There exists a partial order on relevance rela-
tion: at a time t, for a facet f, and a user u, the set R,(t,f,u) is partially ordered.

We could also consider the hypothesis of an order on the irrelevance relation but, as said
before we think this order is less important than the one for relevance relation because the
goal of an IRS is to emphasis the structure of the relevant documents and not the structure
of the irrelevant documents.

Hypothesis 10 (Irrelevance pre-order) There exists a partial pre-order on the irrele-
vance relation: at a time t, given a user u, the set R,(t,u) is partially pre-ordered.

7.2.6 Time and facet-related definitions

When considering the previous notions of time variation of relevance and of partial order
associated to the evaluation of relevance at any given time, one can address some new
interesting notions that describe how the retrieval process evolves over time. An important
one is the notion of convergence that expresses whether or not the retrieval process has
reached a stable state (i.e. there are no changes about retrieved documents and there
ranking from time #; to time ¢, despite all the intermediary interactions that occurred in
this interval).
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When taking into account the partial order, we can talk about the convergence of the
search. This means that a retrieval process converge toward some documents if the ranking
of relevance has some stability. As we use a partial order, we talk about strong or weak
convergence when the relation order holds over time or not.

Definition 8 (Weak temporal convergence) Given a partial order on R, (t,f,u), for
all dy,dy € Ry(t;,f,u) with dy =4, dy, if for all sets R,(ts,f,u) where ty > 11, one have
di,dy € Ry(te,f,u) and dy and dy are comparable, and one still have dy =+, dy, then we
say that the sequence of sets R, (t,[f,u) weakly converge.

This property expresses that if a given partial order exists at time #; among relevant
documents, part of this order still exists at time #5 and this order is not contradictory with
the order at time #;

Definition 9 (Strong temporal convergence) Given a partial order on R, (t, [, u), for
di,dy € Ry(ts,f, u) with dy =, d, if for all R (o, f,u) wherety > 1y, di,dy € R, (ta,f, u)
then dy and dy are comparable and dy >, dy then we say that the sequence of sets R, (t,f, u)
strongly converge.

This last definition states that if there exists a partial order among relevant documents
at time #1, then this order still holds at time ,.

7.2.7 Consistency between abstract and actual relevance

If the abstract relevance exists, it is reasonable to think that the user is consistent with it.
We can say that the user actual relevance is a way of approaching the abstract relevance
over time.

Hypothesis 11 (Consistence of the actual relevance with abstract relevance)
We suppose that a user in an actual situation has a relevance judgment that is consistent
with the abstract one.

For all facets, this can be expressed by:

Vi, R,(t,u) C Rel(C, q) and R,(t,u) C Rel(C, q)
This hypothesis implies the following property.

Property 1 (Consistency of relevance) For allt andt', for a given facet [ and a given
user u:

R, fu) "R (E, f,u) = 0.

In return, as long as this property is verified, the hypothesis (11) is not invalidated by
the user’s behavior.
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Figure 7.2: Actual user relevance

7.3 System relevance

Until now, we have ignored the retrieval system and concentrated on the notion of user
relevance. When introducing the IRS in the retrieval process, we have to be able to describe
in a formal way its behavior compared to user’s needs.

Hence, objective of IR models is to be able to formalize the informational content of
d, the subjective user’s need ¢ and how the system will help to match d and ¢ in an
appropriate way. The following principle is the ground of an IR modeling.

Hypothesis 12 (IR processing is formalizable) There exist formalisms in which d
and q can be partially expressed within the relevance relation. We call the formalization
of d the index noted IND(d) or simply D, and we call the formalization of q the inter-
pretation of the query noted INT(q) or simply Q. The retrieval mechanism of system s
can compute the set of all documents Rq(t,s) that matches query () at time t. There also
exists in the model, a matching relation noted = between D and ().

Abstract relevance

7

System relevance

Figure 7.3: System relevance

We say that the formalism partially expresses the original objects because the infor-
mation in D is a degradation (i.e. an approximation) of the original information in d and
because the original user’s need ¢ is also approximated in ). We think that considering
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these degradations is one key point of an effective and complete IR model: along with the
quality of the matching function, this explain why retrieved documents may not be always
relevant to the user, and why relevant documents may not be retrieved at all. This intro-
duce the well known notion of system relevance, as opposed as the one of user relevance
introduced before.

Documents that are system relevant for a given query () and a system s, are noted:

Ro(t,s)={d eC|D=IND(d)AND =ZQ ANtime(Q) = t}.

This is the set of documents the system s judges d as relevant to the query () at time ¢.

The system applies its matching function to all documents of the corpus. Each docu-
ment of the corpus is then either relevant or irrelevant:

Axiom 1 (System relevance) All [RS are defined in a way that :

Ro(t,s) URg(t,s) = C and Ro(1,5) N Rgl(t.s) =

At any moment when the query is processed, system relevance induces a partition
of the corpus and this partition can evolve during the retrieval process. The axiom (1)
is the equivalent of the static consistency hypothesis (6) from the system point of view.
Other characteristics of user relevance cannot be applied for system relevance because
with this axiom we state that the system is always able to compute the relevance for all
documents, all the time. As the user relevance judgment is taken as a reference, if there is
a disagreement between the user and the system, the latter must change it’s point of view.
In this context, stability and consistency of the system relevance judgment is a non sens.

We have supposed the user able to rank the received documents according to their
relevance judgment. This order is necessarily partial because a normal user cannot know
all documents of the base in order to completely rank them, and moreover it could exist
documents that are not comparable from the user’s point of view. On the contrary, the
system can always establish an absolute ranking of the documents, and this ranking is
often total. In many system the result of the matching between the query and documents
is resumed by real number that express the relevance ranking.

In figure (7.3) we show that the system relevance splits the corpus in a different way
that the abstract relevance does. The goal of the system is to help to reach a state where
the system relevance is as close as possible to the abstract relevance. To achieve this goal,
the system can use user feedback and query reformulation.
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Abstract relevance

7

Rel(C,q)
System relevance

Rel(C,q)

Figure 7.4: Abstract silence and noise

7.3.1 Silence and noise

With these notations, an ideal information retrieval system is the one that selects the same
documents that the user would select:

Vi, Rq(t,s) = Rel(C, q)

This evaluation of this condition cannot be computed in practice because the abstract
user relevance Rel(C, q) cannot be reached in an normal interaction. First, because the
need ¢ has to be expressed into () in the query language of the IR system and second,
because it would be infeasible and absurd to ask the user to check all the documents and
tell the system which ones are relevant. In test collections Rel(C, ¢) is estimated for a given
set of user’s need g¢.

The abstract silence is the theoretical set of documents that are relevant but not
retrieved by the system.

Definition 10 (Abstract silence) At time t, the abstract silence is defined by
Rel(C,q) — Rql(t,s).
The overall abstract silence for a whole retrieval session, is defined by
Rel(C,q) —U; Ro(t,s).

The abstract noise are documents retrieved by the system but irrelevant to the user’s
need.

Definition 11 (Abstract noise) At time t, the abstract noise is defined by

Rol(t,s) — Rel(C, q).



96 A Study Of System And User Relevance In IR

Abstract relevance

System relevance

Rel(C,q)

Figure 7.5: First user feed back

The overall noise for an entire retrieval session, is defined by

Ui(Ral(l,5) = Rel(C, q)).

7.3.2 User feedback

User feedback is an information the system has to take into account to adapt its matching
computation. This adaptation can be either a modification of the query (), some modifi-
cations of the document’s index D, or the modification of the matching evaluation itself.
Most often in practice, the query () is the only information expanded using knowledge
from a thesaurus and using documents selected by the user as relevant (positive feedback)
or as irrelevant (negative feedback).

At the first feedback step at time ¢t = 1, the user can only assess the relevance or irrel-
evance of documents retrieved by the system according to his original query () submitted
at time ¢t = 0. At a time ¢ user select documents on a list proposed by the system. Hence
we have the following relations.

e The user selects some relevant documents : R, (¢, u) C Rq(t,s).

e The user selects some irrelevant documents : R, (¢, u) € Ro(t,s).

In general, in a particular step of relevance feedback, at time ¢ the system store the
user’s feedback of all previous user’s answer at time ¢’ < . In the following we analyze all
possible sets intersections.

L. Rg(t,s)NR,(t', u) : thisis the set of relevant documents that are at time ¢ retrieved
by the system and previously accepted as relevant by the user.

2. Ro(t,s)NR,(#,u) : this is the set of documents that the user does not want to see
anymore and that the system has not retrieved.
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Ro(t,u)

System relevance

Figure 7.6: General situation of feed back

3. Ro(t,s) N R, (¥, u) : this is the set of documents that the system still retrieves
whereas the user does not want then. This corresponds to a dynamic noise.

4. Rg(t,s) N R, (', u) : this is the set of documents that the user has noted relevant
to the system and that the system is no more able to retrieve at time . We call this
set dynamic silence.

5. Ro(t,s) =R, (', u) —R,(t, u) : this is the set of documents retrieved for which the
user does not have any opinion.

6. Ro(t,s) — R, (t',u) — R,(#,u) : this is the set of not retrieved document for which
the user has any opinion.

Definition 12 (Feedback quality) For t > t', feedback dynamic quality is measured in
terms of:

e Ro(t,s)NR,(t,u) that expresses dynamic silence;

o Ro(t,s)NR,(t,u) that expresses dynamic noise.

The feedback quality is high when the size of these two sets are low.

7.3.3 Matching relation

In this part, we study possible matching relations, their properties and consequences on
retrieval efficiency. At first, we can examine several possible definitions of the indexation
relation I N D. This relation associate real documents of the corpus C to index. We propose
to examine two cases that we will use later. In the first case, only one index is associate to
documents. We call it mono indexing. In the second we associate a set of index and call it
multi indexing.
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Definition 13 (Mono indexing) For a given real document d there exists one and only
one index D associated by the relation IND.

Definition 14 (Multi indexing) For a given real document d there exists one and only
one set of index D associated by the relation IND.

In both cases, we can build a system that ensure the retrieval of only one document
given an index. If this property is not verified then the system is not able to retrieve
separately two different documents that have the same index. This can be a problem if a
user judges one as relevant and the other as irrelevant. We have two possible definition
depending if we consider index or set of index.

Definition 15 (Discriminance of index) Given an index D, it corresponds to at most
only one real document d by the reverse indexing relation.

Definition 16 (Discriminance of set of index) Given a set of index {D;}, it corre-
sponds to at most only one real document d by the reverse indexing relation.

On the query side, we can also consider individual query or sets of queries associated to
a single user’s need ¢. This situation typically arises when processing relevance feedback
which leads to query reformulation that may be considered as new expressions of the same
user’s need ¢, provided that it has not changed. So expression () evolves during the retrieval
session but is always associated to an unique need ¢. As a result INT(q) is the set of all
different formalizations of the original user’s need. This set is of course not entirely known
from the system, but is incrementally obtained through the interaction.

Hypothesis 13 (Interpretation of user’s need) A user’s need q is associated to a set
of queries though the interpretation function: INT(q) = {Q;}

A good IR system aims to approximate user’s relevance using a set of formulated and
reformulated queries. This reformulation of () can be done either by the system (automatic
reformulation) in accordance to the feedback recorded from user’s reactions, or by the user.

Hypothesis 14 (Relevance feedback) R, (¢, u) = Ugernr(q) Ro(t,s)

In order to formalize the notion of relevance we have to chose an adequate relation that
models the relevance relation. We can propose for that a two-valued function that expresses
whether the index D and the query () match or not. For some systems (for example the
vector space model) the matching function is multi-valued. For this modelization, we
propose to define a two-valued matching function as a relation = between D and ().
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Exhaustivity criteria Specificity criteria

Figure 7.7: Matching criteria

Definition 17 (Matching relation) We define a matching relation noted M, by:
My =4y {(D,Q)|Q € INT(q)V D =Q}.

A multi-valued matching function can be easily obtained by ordering the set of couples
of M,. When we need a numerical total ordering we have to map all the couples from the
relation 2 to the interval of reals [0, 1].

In [Nie and Chiaramella, 1990] Nie has proposed to split the matching function into
two sub functions he called direct and reverse implication. As we do not have mentioned
any logical notion at this step of our model, we split the matching relation into a direct
matching [ and a reverse matching 2.

Hypothesis 15 (Reverse and direct matching) Modelization of D and Q) are not nec-
essary expressed in the same formalism. We suppose that the IR matching relation = can
be split into two relations:

e a direct matching relation from D to Q (D EQ),

e a reverse matching relation from Q to D (Q = D).

The matching relation is computed by a combination of the direct and reverse matchings.

We can give an informal semantic definition of these relations:

e Exhaustivity criteria: D 2 () means that D satisfies all the themes of Q.

e Specificity criteria: () = D means that D only contents themes related to Q). In
that sense, D is entirely dedicated to ().
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Definition 18 (Homogeneity of the model) An IR model is homogeneous if the
model of the real document and of the need, are both expressed in the same formalism.
In that case, D and @) belong to the same set. In the reverse, we say that the model is
heterogeneous.

In some model, the reverse matching relation is exactly the same relation as the inverse
direct matching relation. We call this property the symmetry of the matching relation.

Definition 19 (Symmetry of the matching relation) An homogeneous model is sym-
metric when the reverse matching relation is identical to the inverse direct matching rela-
tion: & = =71,

We recall the definition of an inverse relation:

E = {(Q.D) | D EQ}

or also

QE'D=u; DEQ

When the TR model is homogeneous, one can study general properties of the matching
relation. This has been done in some studies like [Huibers and Denos, 1995; Huibers and
Bruza, 1994]. For example, we can classify the matching relations (=, 2, %) considering
symmetry, reflexivity or transitivity.

7.3.4 Matching classification

In this part we propose to detail the matching function 2 in term of comparing elements
of D that we call indexing terms. These terms can be either atomic datum (such as
keywords) that express partially document content or global interpretation of documents
that expresses globally document content. We propose also some criteria to classify IR
model. These two choices are dual. In practice, index terms are keywords or, in more
recent and experimental systems they are more complex objects (a formula of a logic, a
graph, etc). These models can be considered as generic in the sense that we do not need to
know into details how to identify two descriptors, and how to decide when they are equal.

In the following list of models, we propose a classification based on set theory. In the
following formulas, letters x,y are some index terms, n is an integer, and the function
Card(A) returns the cardinality of the set A.

1. Equivalence matching: The modelization here is simple: there exists an equivalent
relation on indexing terms noted =. We use one simple indexing term for a query
and for a document. When index terms are keywords, this model is uninteresting,



A Study Of System And User Relevance In IR 101

but when they are more complex objects, this is just like a data-base behavior which
is an exact matching. For this model, the comparison is only an identity. This
modelization is homogeneous.

Q =dey v, D =4e5 y
= = {(D,Q) ] Q = D}.

2. Membership matching: The index document is a set of index terms. This model
is heterogeneous.

Q =aes v, D =ae5 {yi},
E =iws {(D,Q) | Q € D}.

In theses models, there is often no difference between the reverse matching relation 24
and =™ and the matching relations defined in terms of the direct matching relation

— =def ri/

3. Inclusion matching: Both document and query are sets of indexing terms. This
model is necessarily homogeneous.

Q =dqes {7:}, D =qey
E = {(D,Q)Q
o =4 {(Q, D) | D

For the matching relation,we can choose for example among:

=aes {(D,Q) | D EQor Q= D}
=4es {(D,Q) | D E Q and Q & D}

~
~

4. Overlap matching: In this type of model, the matching function measures the
degree of overlapping between the document and the query.

Q =acs {7i}, D =acs {vi}

Different matching functions can be expressed using the intersection measure. For
example, one can have a cut off value n to decide the matching.

> =1 {(D.Q) | Card(Q 1\ D) > n}

All these models can rank the retrieved documents. For example, one can use the
size of the overlap:

(D1 =ZQ) = (D22 Q) Sy Card(Q N Dy) > Card(Q N Dy)

This classification makes sense because all models listed in [Blair, 1990] belongs to one
of this four classes.
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7.3.5 Integration of facet in system relevance

We have proposed a notion of facet to explain the preference of the user when evaluating
the relevance of documents, and especially to explain some inconsistencies of his ranking
choices. This notion of facet can be usefully introduced into the retrieval model. If the
system can take into account some user’s point of view, we can expect some improvement
in the results. These improvements will be more important if the system facets are close to
the users ones. We will be however limited to a fixed number of predefined facets according
to the kind of media managed by the IRS.

Axiom 2 (System relevance and facets) Indexes D and queries Q) are split into a fi-
nite fized number of facets f. Several matching functions =y are build and associated to
the corresponding queries ()5 and document description Dy.

Queries () and indexes D are defined as the set all faceted queries and faceted indexes.

D ={Dy} and @ = {Qy}
We introduce now the set of documents selected by the system using facets.

Ro(t,f,s) ={d € C| the system s judges d as relevant to the query @) for a facet f at
time ¢}.

This can be expressed using the matching relation.
Ro(t,f,s)={d eC|Ds € IND(d) and Dy =Z; Q}

The set IND(d) represent now all the index associated to one document. Each index
of this set describe a particular facet of the document.

The set of retrieved document without using the facet notion can be defined in a first
approach by a simple union on the facets.

Rol(t,s) =Us Ra(t, [, 5)

If all facets are independent, the set of all faceted indexes { D} can then be structured
by an equivalence relation defined by the membership of each Dy to a global index D.

Definition 20 (System facet dependence) If two different facets fi, fo verify the fol-
lowing condition at time t:

RQ(tvffvs) N RQ(tvf,?vS) 7é 0

then these two facets are declared relevance-dependent at this time. Otherwise they are
declared relevance-independent facets at this time.
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7.4 Application to a logic based model

In this section, we propose to employ the previously detailed general IR description to some
logic-based models. At first, we start from the boolean model that we extend in order to
include the notion of facet. Then, we propose a general framework using modal logic.

7.4.1 Modeling using a formalized logic

Until now, we have formalized IR relevance in a general framework without using any logic.
Here we propose a strong assumption that will limit the formalization to only some logic.
At the end of a successful retrieval process, the user has selected a relevant document and
can always explain the reasons of his choice even if he’s wrong (after reading carefully the
document he may change his mind). So we make the following assumption, we believe
that the notion of relevance between a document and a query deals with some logic. An
example of logic was given previously with the boolean model.

Hypothesis 16 (Relevance is logic) We make the assumption that for a document to
be relevant to a query there exvist a causal chain of deductions beginning at the document
and ending at the query.

The system relevance can then be proved by demonstrating that D — ). This im-
plication is called the information retrieval implication. We examine here general
principles one can assert concerning IR. We follow here ideas proposed by VanRijsbergen

in [van Rijsbergen, 1986a] and developed by Nie in [Nie and Chiaramella, 1990].

The index D of a document d partially describes his informational content. There
are many ways for a human being for reading, looking, hearing a document, so that it is
obviously an even harder task for a computer to decide about “document content”. In the
same way, a query () expresses only a part of ¢ which is what the user wants: the user
cannot express all his needs in details mainly because of the language barrier. An other
obvious reason is that he usually cannot actually describe an information he is precisely
looking for.

7.4.2 The boolean model

In the boolean model, D is a set of index terms {z;}. The query @) is any boolean expression
of index terms. Thus () is a formula in the proposition calculus. The matching function

2 is defined by:

o if Q=ua;,then D=Qiff ;€D
e ifQ=Q'VQ"then D=Qiff D=ZQ or D=Q"
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e if Q=Q NQ" then D= Q iff D= Q' and D = Q"
o if ) =—Q then D= Q iff not D = Q'

If we change the phrase “x; € D” into “z; is true in D”, we obtain the classical definition
of a logical interpretation of the formula () in the proposition calculus. In an IR system,
the interpretation of a term cannot be the usual one which is “the proposition denotes
a fact that is true in this interpretation” because an index has nothing to do with truth
values of the document content.

The only way that seems reasonable for interpreting atomic terms with a truth value is
to consider the truth value associated to a term as the fact “the terms is a good descriptor
of the document’s content”.

Definition 21 (Interpretation of index term truth) For a given document d, we con-
sider that this index is expressed by logical atomic indexing terms x;. The interpretation
of x; is true if x; is a good representation of the document d; x; is false otherwise.

Using this definition, we can say that a document index D is a logical interpretation of
the indexing terms. In this way, the matching function is the logical consequence connector

This model is heterogeneous because D is a logical interpretation of atomic terms, and
() is a formula belonging to the logic language. In D | @, () can also be understood as
sets of interpretations. Thus D = @ is understood as “the interpretation D is in the set
of interpretations Q7. Thus, this model fits in the membership matching.

In propositional calculus, the semantic deduction theorem holds:
AEBITEADRB

Thus, in the boolean model, we can either consider D as an interpretation of index
terms or as a logical formula. The matching function can also either be expressed by the
semantic deduction, or the material implication. In this last case, we have to compute the
validity of the formula D D (). We have shown here that there are two possible equivalent
modeling, the modeling based on validity and the modeling based on satisfiability in a logic
with the semantical approach.

The interpretation of a document D is closely related to the notion of facet we have
proposed in section (7.3.5) because facets are defined as different points of view about
documents: one interpretation is then a particular point of view about a document.

Ro(l.f,s) ={d € C| Dy € IND;(d) and Dy |= Qy}
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7.4.3 Extended boolean model

In the notation D |= @, D can be either a set of interpretations or a formula. When D
is a formula, = means that all interpretations of D validate the formula ). Now D E @
means that D answers to () over all facets which is a strong restriction to the matching
process. Moreover, it is better to accept successful matching for at least one facet. We
cannot express this refinement in classical propositional logic.

In modal logic, we can use the operator & and A = OB that precisely means that B is
true in at least one interpretation accessible from A. In our context, interpretations are as-
sociated to facets, and the accessibility relation links several facets associated to one global
index D. As we have chosen an equivalence structure for the set {D;} the accessibility
relation is an equivalence relation. The modal system S5 is based on a equivalence acces-
sibility relation: it seems then to be the appropriate system to model a faceted boolean
retrieval system.

For every document that belongs to R¢(t, s) there exists a facet f so that this document
belongs also to Rg(t,f,s). This is true because Rq(t,f,s) is defined as the union of
Ro(t,f,s). Thus, there exists an interpretation Dy so that Dy = (). We can then propose
the following definition:

Ro(t,s)={d €C| D =IND(d) and D E <CQ}

7.4.4 A modal retrieval model

In this part we focus on the use of a modal logic to express the relation & or relations [
and & as a logical implication. We introduce the use of modality that better expresses the
IR paradigm than classical logic does.

Lets recall some basic definitions *. A valuation V of a formula, is a mapping from the
propositions Prop, to a set of logical values 2. We usually use a set of two values and so
we use a two valued logic:

V:Prop— 2

We say that a given valuation models a formula, or is a model of a formula, if this
formula is true using this valuation.

We are using now several models that are called worlds. The modality appears when
these worlds are linked with a binary relation. We refer to this set of worlds W and to
the transitions 6 as a transition structure, or simply as structure. When considering modal
formulas, the valuation becomes:

!For a definition of modal logic see [Chellas, 1980], [Hughes and Cresswell, 1972] or [Popkorn, 1994].
We have used in this paper notations proposed in [Popkorn, 1994].
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V:Prop — PW
SCW x W

The valuation of a proposition is an element of the power set PW of W (a subset of
W). It defines the subset of all worlds of W where a proposition is true. Relations between
worlds express a modality that means that a world is accessible, or possible from an other
world. The new operator O called necessity, means that a formula O® is valid in a world
w, if all the accessible worlds from w by é make ® valid:

wE 00 & (Vo) |wor and x = O]
If we combine the sets of PW by union, intersection and complementation
XuyXnY - X=wW-X

we obtain a Boolean algebra. With the operator OX defined by:

a € 0OX & (Vo)[abr = v € X]

the obtained structure is called a modal algebra. The & operator called possibility, is
deduced from O : &P = -0,

In the following section, we describe a use of a modal logic for modeling IR which is in
fact an extension of the Boolean model of IR.

7.4.5 Modal indexing

We propose to use modal logic for IR in this way : documents d are associated to a subset
of W. Each element of W is a possible interpretation of a document, and thus a possible
facet.

D =1IND(d)
IND(d) c W

User’s needs ¢ are associated to queries () expressed as formulas built from proposition
Prop and logical connectors (A,V,—, and <). The modal valuation V' of formula asso-
ciates propositions to a set of worlds, and using the reverse I N D relation, a proposition is
associated to a set of document facets.

The transition 6 between worlds expresses the relationship between facets. We propose
to use this relation to represent the way facets are associated to documents. Two document
facets Dy and Dy are linked by ¢ if they are facets of the same document:
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For Df,Df/ e W dd | Df,Df/ € ]ND(d) = Df ) Df/

We will examine later, the way we can use modality for the retrieval part.

7.4.6 Modal retrieval

Using modal logic, we state that the IR matching D = (), is represented by the satisfaction
of the formula () in one world associated to d for a given facet f. In a modal logic, the
satisfaction relation |= is defined for a set of worlds W, for a given valuation V of the
atomic propositions on these worlds, and from a given world w.

(W, Vw) = Q

As we propose to fix the set of worlds and the valuation which represents the result of
the indexation process, we will simplify the notation into:

e w = () when we consider a world not associated to a facet index;

e D; |= @) when we consider a world related to a given facet.

The set of retrieved documents for a given facet is defined as the set of documents for
which there exists a document interpretation Dy (i.e. interpreted via a facet f) so that
the query @) is valid:

Ro(t,f,s)={de€C|D=IND(d), Df € D and D; E Q}

Using a modal logic, there are three ways of defining a logical consequence: from a
given world, from any world of a given structure, and from any structure:

1. satisfaction from a word of a structure: w = @
2. satisfaction from any worlds of a structure: (Yw)w = @

3. satisfaction from any structures: = @
All these three logical consequences have a meaning in an IR context :

1. If we find Dy so that Dy = @, then D is a good answer to @) for the facet f.

2. If we find Dy so that Dy = OQ, then D is a good answer to @) for at least one other
facet of D.
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3. If we find Dy so that Dy = OQ, then D is a good answer to ) for all other facets of
D.

4. If we have (Yw)w |= @, then every D is a possible answer to (). Thus this query is
more general for the given corpus of documents and for the set of known facets. On
the other side, if (Yw)w | =@ then we say that @) is too specific for the given corpus
and for the known facets; there exists no document nor document facet that is an
answer to ().

5. As we do not constrain the formulation of the formula (), we could obtain the situation
where () is true (or false) whatever the choice of a set of worlds and the choice of a
structure of these worlds. We note this tautology = @ (or = —Q). In this case, we
reject the query because it is obviously a useless query for the user.

7.4.7 Using modality in a query language

In the model we propose here, a query is associated to a formula and a document is
associated to a set of worlds. We examine now the use of modality in this formula and
consequently, we propose a modal query language for IR.

Let’s recall at first the meaning of the classical logic connector in an IR context. A
correct query is associated to a satisfiable formula. We avoid tautology or absurdity:
formulas so that = @ (or = —Q) are not accepted as queries because all documents
(respect. no document) would be relevant to this query.

We consider now index terms ¢ that occur in the query ). We say that a term ¢ indexes

a facet f of a document d if we have Dy € IND(d) and Dy = 1.

e The semantics of the “and” connector is: Dy |= t; Aty, which means that Dy |= t; and
Dy = ty. This means the trivial fact that the “and“ is used to retrieve documents
that are indexed by ¢; and 5 considering a facet f.

e The semantics of the “or” connector is: Dy |=t1 V 1, which means that Dy =t or
Dy |= ta. In a query, this expresses a kind of uncertainty about these two terms: the
user is not sure which of these two terms are important to him because he accepts
as relevant documents that are indexed by one term or both.

e The negation operator is used to reject documents indexed by a term, but not to
retrieve a negated fact. For example, an IRS can retrieve documents about planes
and not about wings, but we cannot express a query searching for document about
planes without wings. In this model, we have either D; = =t or Dy = 1.

e The modal operator is used to refer other facets: D; |= Ot means that there exists
another facet for D where D is indexed by t. The O being equivalent to =~O— by
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definition, D; = Ot means that the term ¢ indexes all the other facets associated to
the document.

We can then combine and use the modal operators in a query. For example, we can
ask the query:
(11 A Oty) V Ol

Here we are searching for a document indexed by t; on one facet and indexed by t; on all
other facets, or indexed by ¢3 on one other facet.

This small example only shows that modality is a possible way to formalize the notion
of facet relevance. This model is a first step that introduces the notion of facet into an
IRS model. More development are necessary to precise and generalize this use of logic and
specially the use of modal logic. This work will be carried out even if this task is meant

to be finished.

In the next section, we give a short example about the modeling of dynamic user
interaction. This interaction must not be limited to a relevance feedback but extended to
all useful feedbacks a system could obtain from the user in order to match his information
needs. We are very interested by user interaction modeling because we think it can lead
to a major break through for IR systems. This approach will also be carried on in the

FERMI project.

7.5 Modeling the dynamic process of IR

A most important aspect an IR model should include is the dynamic behavior between the
system and the user that occur within a session. The purpose of this interaction is to to
find documents that are closer to the original user’s needs. For example, the system can
directly ask the user to solve ambiguities and find correct interpretation of the user‘s need.
After the query formulation, the system can also adapt its relevance judgments by asking
the user to select some retrieved documents.

The standard logic can easily describe a static process of logic deduction, but fails to
express unknown information and the dynamic aspects of Information Retrieval. Specially,
we want to formalize the user behavior when he is interacting with the retrieval process.

7.5.1 An example

To illustrate our goal, we present an example of interesting modal calculus. We propose
to model the behavior of an IRS that have to choose the relevant documents from a given
query. We model this fact in a high level, and for this example, we do not detail the
content of the query nor the index of documents. We just propose to consider the fact
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that a document Dy is relevant to the query or that the document Dpg is relevant. The
question is very simple.

We wants the system to discover the pertinence of D4 using the answers of the user.
We propose a scenario in which the system must deduce facts from the user’s interaction.

In this example, we assume that the notion of relevance is absolute and that the user
or the system can only know or ignore this fact. We also assume that the user’s judgment
is correct and absolute (we know that this assumption is a bit strong and does not take
into account the fact the the user can revise his own judgment).

The system starts by showing document’s titles to the user. The system wants to know
more about these documents and specially the user relevance. It asks the user about the
first document D 4. The user only answers that he knows about the relevance of A because
he has read it entirely. Then the system wants to know more about Dg. The user answers
that he does not know the pertinence of Dg because he has not read it.

Now the user wants to leave the system and it asks him before leaving if he is satisfied.
The user say yes, because he has found a relevant document. With this information, the
system knows that D4 is a relevant document for the user, but it cannot say anything
about Dg.

For us, this answer is obvious, but how can the system deduce this fact 7 It only knows
that the user knows the relevance or irrelevance of Dy, and he does not know the relevance
of Dp, and finally that the user thinks that D4 or Dpg is relevant. If D4 were not relevant
it could not be sure that at least one of the two are relevant, because he does not know
about the relevance of Dg. So the system knows now that D, is relevant. We can make
the same reasoning for any number of documents.

It we wants to model this reasoning we have to model the fact that D, is relevant or
not, Dp is relevant or not, and the fact the the user or the system knows or not knows
some facts. This point is very important because it makes the difference between classical
logic deduction and modal logic deduction as we will show it in the following.

7.5.2 Formalization

Let’s use A to say that D4 is relevant and —A to say that D4 is not relevant (idem for B).
Lets use the symbol K, as an unary operator expressing what the system knows and K,
to express what the user knows. The fact that the system knows that the user knows the
relevance of Dy is expressed by K (K,AV K,—A). Then the fact that the system knows
that the user does not know the pertinence of Dg is expressed by Ks(—~K,B). Finally,
the fact that the system knows that the user has found at least one relevant document, is

expressed by K, K, (AV B).

For the formal deduction, we uses the axioms and rules (modus ponens) of the predicate
logic. We must add rules and axioms for the new operators K.
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First, we assume that if something is false, we cannot know it:
-® DK, P
As it is a thesis in PC that :
(—XD>-Y)D (Y DX)

We propose the axiom:

K,® > ® (7.1)

We must also add the fact that if someone knows that if he has X then he can deduce
Y, when he knows X then he also knows Y. This is in fact the distributivity of the K,
operator:

K, (X DY)D (K, X DK,Y)

Finally, one must propose a rule that deals with K, expressing that if something is
true, then we know that it is true:

o
K, 0 (7:2)
With this system, we must prove that K A :
7.5.3 Proof
The system knows the fact that the user has found at least one relevant document :
KK, (AV B) (7.3)
This can be rewritten in :
K,K,(~AD B)
Using the distributivity axiom we have :
K,(-ADB)D (K,~A D K,B) (7.4)

We can add in any formula X O Y the operator K, and obtain K, X D K,Y. If we
have proved X D Y by using rule (7.2) we obtain K,(X D Y); by using distributivity
we have : K, (X DY) D (K,X D K,Y) and finally by modus ponens we prove that
K, X D K.,Y. So we resume by the rules :

K.(® D 9¢)
K,® > K,¢

¢ Do
K. ® > K,¢
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With this new rule we can deduce from (7.4) :
K (K.,(-ADB))D> K,(K,~A D K,B)
and by modus ponens with (7.3) we obtain :
K,(K,~A > K,B) (7.7)

The formula (X DY) D (=Y D =X) is an axiom of the proposition calculus. So is by
rule (7.6) the formula K;(X DY) D K,(—=Y D —X). By replacing X and Y by K,—A and

K, B, and using modus ponens with (7.7) we have :

K (=K,B > ~K,~A) (7.8)

Now let‘s use again distributivity (7.4) on (7.8) to build K,(=K,B D> —K,—A) D
(Ks—~K,B D> K;—K,—A) and with modus ponens with (7.8) we obtain :

(K,~K,B > K,~K,~A) (7.9)

The fact that the system knows that the user do not knows the pertinence of Dpg is
expressed by K;(—K,B). So with the modus ponens on (7.9) we obtain :

K,~K, A (7.10)

The fact that the system knows that the user knows the relevance of Dy is express by
K,(K,AV K,—A) that we can rewrite in K;(-K,~A D K,A). With the rule (7.5) we
obtain K;—K,—~A D K,K,A and with modus ponens with (7.10) we obtain :

KK, A (7.11)

Finally with the axiom (7.1) we build K, A O A and deduce with (7.6) K, K,A D K A,
by using at least the modus ponens with (7.11) we obtain what we wanted to prove, that
18 :

KA

The logic we have used is a propositional modal logic. More precisely, we have used
the Kripke system with the characteristic formula :

D(P >Q)D (8P D8Q)

The system used is multi-modal using K and K, unary operators. The modality used
here enable to talk about knowledge of facts. As we have shown, it can be useful in IR
system as a complete IR system must deal with user response.

We could build such a system using the (strong) assumption that the user knows the
relevance of documents when he asks for reading more than the title. If the system only
ask him at the end if he is satisfied or not, one could compute some knowledge as we have
done in this example.
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7.6 Conclusion

In this paper we have proposed a general framework to describe user and system relevance.
We have introduced the notion of time related to user relevance as opposed to abstract
relevance. We have also introduced the notion of user’s point of view as expressed by the
notion of facet. We have shown that this notion is closely related to the user ranking
of preferred documents. We have also proposed an attempt to instantiate this approach
into a logic chosen among the modal proposition logic. The obtained model does not refer
to how the index terms are made, and these terms could not be only keywords, but any
element of a more complex structure (ex: graphs).

This work is a first step in the understanding of the notion of relevance used in today
Information Retrieval Systems. The approach we have followed is the definition of precise
requirements about what seems important to model an IR system: user relevance versus
system relevance, user interaction and relevance feedback.

Our goal was to make clear the underlying assumption IRS are based on. By making
them explicit, we hope to reach a better understanding of IRS modeling, implementing
and at least more effective performance measures. This was one of the possible directions
we had mentioned in the previous FERMI report for task 1.3. We can now say that this
goal is almost achieved.

The other possible direction was an in deep studies of the use of modal logic for modeling
IR relevance. After having studied a lot of possible modal logic, we have still retain in this
report a very small example of the use of these logics. In fact, at the beginning of the task
of this FERMI project, we were convinced that the IR relevance notion would necessary
go thought a modal fuzzy logic. After this exploration, we are not so categorical, and we
better convinced that if we wants to bring a major improvement on the IRS behavior in
the relevance side, we have to detail and to deeply express what is the perception of the
notion IR relevance we use in our systems.

A new aspect of the relevance notion is emerging during this study: the modeling of
time related user feedback. We think that this notion is tightly linked to the relevance
notion. In this paper, we have just mention an example of modelization using logic. In
fact, we have open an unexpected viewpoint and it will need the same formal approach we
have taken to modelize user and system relevance.

In conclusion, we will still work on these directions on the FERMI project even if
this task 1.3 is theoretically closed. We have given only an example of user interaction
modelization, but time modeling is an important element for the dynamic of interaction
and some more studies will be pursued in order to correctly specify these process.
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Appendix A

Existing Extensions to TLs

In this chapter we briefly describe the extensions, from an expressive power point of view,
developed in the context of TLs. The list is not exhaustive but includes all features that
may be of some interest to IR.

Probabilistic extension: Probabilistic versions of TLs [Hollunder, 1994; Sebastiani, 1994;
Yen, 1991] could be investigated as a means of making explicit various sources of un-
certainty, such as uncertainty related to domain knowledge and uncertainty related
to automatic document representation, which is typical in IR;

Concrete domain extension: Ability to refer to concrete domain and predicates on
these domains [Baader and Hanschke, 1991]. Therefore, incorporating kinds of data
types as “string”, “integer”, “link” (link to the position of a keyword in a document,
link to another related document, etc.), etc.;

Rule language extension: Rules, as those appearing in the context of frame-based sys-
tems (procedural rules), has been shown to be very useful in real applications as
they helps to describe knowledge about the domain [Donini et al, 1991b; Patel-
Schneider et al., 1991];

Closed World Assumption, Closed Domain Reasoning: Closed world reasoning
and closed domain reasoning seem to be suitable for IR purposes, as they are close to
usual databases reasoning [Donini et al., 1992c; Reiter, 1990b; Reiter, 1978; Reiter,
1984];

Temporal extension: Integrating time into TLs using temporal logics and interval cal-
culus, yielding a temporal TL which combines structural with temporal abstraction

[Artale and Franconi, 1994; Artale and Franconi, 1995; Schmiedel, 1990

N-ary terms extension: Usually, TLs allows the representation of at most two place
relations. N-ary terms allows the representation of relations whose arity exceeds two

[Schmolze, 1989
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OODBMS extension: Extension about the integration of TLs and Object Oriented
Database Systems seems to be very useful for both [Beneventano et al., 1993];

Relational database operators extension: The operators of relational databases are
integrated into TLs and are shown to be very useful [De Giacomo and Lenzerini,

1995);

Modal extension: Modal operators are integrated into TLs, yielding a modal TL which
handles notions as belief, intentions and time, which are essential for the representa-
tion of multi-agent environments [Baader and Laux, 1995];

Default extension: Default inheritance reasoning, a kind of default reasoning that is
specifically oriented to reasoning on taxonomies (typical of frame-based systems) is

included into TLs [Straccia, 1993].



Appendix B

Proofs

B.1 Proofs of Section 4.4

Lemma 2 Let C, D two concepts and a an individual. Then C' T D if and only if

{C(a)} k= D(a).
Proof:

=) Assume C' C D. Suppose that {C(a)} & D(a). Therefore there is an interpretation
7 such that ¢ € C¥(a?) and ¢ € D*(a?). Therefore, a’ € CT, whereas o’ € DI and,
thus, C_lz_ o D_II_, contrary to the assumption C' C D.

<) Assume {C(a)} ke D(a). Suppose that C'IZ D. It follows that there is an interpreta-
tion 7" and d € AT such that t € C*'(d) and t ¢ D”(d). Let T be an interpretation
as I' except that a? = d. Tt follows that t € CZ(a?) and t ¢ D*(a?), contrary to the
assumption {C(a)} & D(a). O

Lemma 3 FEach concept can be transformed into an equivalent NNF concept in polynomial
time. 1

Proof: Let C be a concept. It is sufficient to apply repeatedly the following equiva-
lences (in the following D, D" and R are concepts and a role, respectively):

1. =D =D
2. ~(DND)y=-Du-D,
3. 2(DUD)y=-Dn-D,

4. ~(YR.D) = AR.~D;
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5. =(3IR.D) =VR.-D. O
Lemma 4 No axiom is falsifiable. Equivalently, every axiom is valid.

Proof: Let T be an interpretation and «o,I' — a, A an axiom. If 7 satisfies {a,['}
then 7 satisfies «, and thus 7 satisfies a,I' — a, A. Since this is true for all Z, it follows
that a,I" = a, A is valid. O

Lemma 5 For each rule in Definition 11, the conclusion of the rule is falsifiable iff at
least one of the premises of the rule is falsifiable. FEquivalently, the conclusion of the rule
is valid iff all premises of the rule are valid.

Proof: The proof consists in a case analysis on the rules of Definition 11. Remember
that an interpretation Z falsifies a sequent I' — A iff 7 satisfies all assertions in I" and Z
does not satisfy any of the assertions in A.

case rule (M —):
=) Suppose that Z falsifies the conclusion (C' 11 D)(¢),I' — A. In particular, 7
satisfies C'(t), D(t) and I'. It follows that 7 falsifies C'(¢), D(t),' — A.
<) Suppose that 7 falsifies the premise C(t), D(¢),I' — A. It follows easily that Z
falsifies the conclusion (C' M D)(t),I' — A.

case rule (— M):

=) Suppose that 7 falsifies the conclusion I' = A, (C' 1 D)(t). Therefore, Z neither
satisfies any of the assertions A nor satisfies C'(¢) nor D(t). In both cases, it
follows that Z falsifies at least one of the premises ' — A, C(¢) and I' — A, D(t)
of the rule.

<) Suppose that 7 falsifies I' = A, C(t) or I' = A, D(t). It is easy to see that in
both cases T falsifies the conclusion I' — A, (C' 11 D)(¢).

case rule (U —): Can be proven as (— ).
case rule (— U): Can be proven as (I —).

case rule (— V):

=) Suppose that 7 falsifies the conclusion I' — A, (VR.C)(¢). It follows that Je € AT
such that ¢t € RT(t%,¢) and t € C*¥(¢). Let I’ be an interpretation as Z such
that 27" = e. Tt follows that I’ satisfies T' (note that x is a new variable). Since

t € RE(#1,e) and t & CT(e), T’ falsifies T, R(t,z) — A, C(z).
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<) Suppose that 7 falsifies T', R(t,2) — A,C(z). It then follows that Z satisfies
R(t,x) and T neither satisfies any of the assertions in A nor 7 satisfies C'(z).
Therefore, 7 falsifies the conclusion I' — A, (VR.C)(1).

case rule (3 —):

=) Suppose that Z falsifies the conclusion (FR.C)(t),T — A. Tt follows that Je € AT
such that ¢t € RZ(t%,¢) and t € C¥(¢). Let I’ be an interpretation as Z such
that 27" = e. It follows that T’ falsifies (JR.C)(#),I' — A (note that z is a new
variable) and satisfies both R(?,x) and C(x). Therefore, Z’ falsifies the premise
R(t,z),C(z),I' = A of the rule.

<) Suppose that 7 falsifies the premise R(¢,x),C(z),I' — A. It follows that Z
satisfies (FR.C')(t) and thus, 7 falsifies the conclusion (FR.C')(¢),I' — A of the

rule.
case rule (— 3):

=) Suppose that 7 falsifies the conclusion I' — A, (FR.C)(t). It follows that 7 satis-
fies I' and neither satisfies any assertion in A nor satisfies (3R.C')(t). Therefore,
Ve € AT t & RE(tT,¢) or t € C%(e). In particular, for T e AT we have: if
te RI(tI,t’I) then 7 falsifies I' — A, (FR.C)(1), R(t,t'); if t & CI(t’I) then 7
falsifies
I' = A, (FR.C)(),C(t).

<) Suppose that 7 falsifies at least one of the premises. Therefore, 7 neither sat-
isfies any assertion in A nor satisfies (FR.C')(?). It follows that 7 falsifies the
conclusion I' — A, (FR.C')(t) of the rule.

case rule (mpr —):

=) Suppose that Z falsifies the conclusion (VR.C')(t), R(¢,t'),I' — A. Therefore, 7
satisfies (VR.C')(t) and R(t,t"). By definition of Z it follows that ¢ € CI(t’I) and
thus, 7 satisfies C'(t'). It follows that Z falsifies the premise
(VR.C)(t), R(t,t),C(t"),I' — A of the rule.

<) Suppose that 7T falsifies the premise (VR.C)(t), R(t,t'),C(t),I' — A. Then
trivially 7 falsifies the conclusion (VR.C')(t), R(t,t'),I' — A of the rule. O

Theorem 1 (Soundness) If a sequent I' — A is provable, then it is valid.

Proof: If I' — A is provable then there is a proof tree T' of which it is the conclusion.
We use the induction principle applied to the depth n of proof trees.

case n=0: In this case ' — A is an axiom. From Lemma 4 it follows that I' — A is valid.
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induction step: Suppose that for every proof tree of depth n, the conclusion is valid. We
will show that still this is true for proof trees of depth n 4+ 1. Let T" be a proof tree
of depth n + 1 with conclusion I' — A.

1. If the conclusion I' — A is obtained by application of an one-premise rule R,

then T is of the form
T/
I'—= A

where the conclusion of the proof tree T’, the sequent S, is the premise of the
rule R and I' — A is the conclusion of the rule R: i.e. rule R is of type

R S
I'—= A

Since T" is a proof tree of depth n, by induction it follows that the sequent S is
valid. Therefore from Lemma 5 it follows that I' — A is valid.

2. If the conclusion I' — A is obtained by application of a two-premises rule R
then T' is of the form
T/ T//
r—A

where the conclusions of the proof trees 7" and T”, respectively the sequents 5’
and S”, are the premises of the rule R and I' — A is the conclusion of the rule

R: i.e. rule R is of type
R S/ S//
r—A

Since T" and T" are proof trees of depth less or equal than n, by induction it
follows that the sequents 5" and S” are valid. Therefore from Lemma 5 it follows
that I' — A is valid. O

Lemma 6 Let 7 be an interpretation. Then,

1. for any signed assertion « of type a, T satisfies a iff T satisfies both oy and asy;
2. for any signed assertion 3 of type b, T satisfies  iff T satisfies By or [Bo;

3. for any signed assertion v of type ¢, T satisfies v iff if T satisfies v, then T satisfies
v, for every d such that d € AT;

4. for any signed assertion 6 of type d, I satisfies 6 iff I satisfies 61 and 64, for at least
one d such that d € AT.

Proof: The proofs for signed assertions of type a and type b are straightforward.
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Case type c assertions: We show only the case of 4 in universal quantification form.
The other case is similar.

=) Suppose that 7 satisfies v = T((VR.C)(¢)). By definition, Z satisfies (VR.C)(?).
It then follows that, for every d € AT if t € RZ(t%,d?) then t € C*(d?). There-
fore, if 7 satisfies T'(R(t,d)) then 7 satisfies T(C(d)), for every d such that
de AL

<) Suppose that if 7 satisfies v, then Z satisfies 7o, for every d such that d € AZ.
Therefore, for every d € AT, if t € RT(#%,d) then t € CT(d). Tt follows that T
satisfies (VR.C')(t) and, thus, by definition 7 satisfies v = T ((VR.C)(t)).

Case type d assertions: We show only the case of v in existential quantification form.
The other case is similar.

=) Suppose that 7 satisfies v = T((FR.C)(t)). By definition, T satisfies (IR.C)().
It then follows that there is a d € AT such that t € RT(#7,d?) and t € CT(d?).
Therefore, 7 satisfies both T'(R(¢,d)) and T'(C(d)).

<) Straightforward. O

Lemma 7 Fvery Hintikka set S wrt a set of terms H is satisfiable in an interpretation T
with domain H.

Proof: The interpretation 7 = (A?,.7) is defined as follows.

1. The domain AT is H;
2. every term 1 is interpreted as the term ¢, i.e. t¥ = t;

3. For every primitive assertion and negated primitive assertion, for all terms ¢,¢' € H,

es

))

te AT(t) i T(A(1)
( /
)€

) €
fe ALty iff T((-A)
tEPI(tt) iff  T(P(t,t

By condition HO, it is easy to see that 7 is an interpretation.

We now prove using the induction principle for assertions that 7 satisfies o for every
signed assertion «a € S.

Assume that T'(«) € S, where « is a primitive assertion or a negated primitive assertion.

Then by definition, Z satisfies T'(«v).

Similarly, if NT(«) € S, where « is a primitive assertion or a negated primitive asser-

tion, then 7 satisfies NT'(«v).
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It a type-a signed assertion « is in 5, then by condition H1, both «; and «ay are in S.
By induction, 7 satisfies both «; and «3. Therefore, by Lemma 6, 7 satisfies «.

The case of type-b signed assertion 3 is similar.

If a signed assertion ~ of type cis in S, then by condition H3, for every term ¢’ € AZ, if
v € S then 75 € S. By induction and since " =1, for every d such that d € AT (where
d= t’I), if 7 satisfies vy then 7 satisfies v5. From Lemma 6 it follows that 7 satisfies .

If a type-d assertion 6 is in S, then by condition H4 there is at least on term t' € H
such that both &; and 6, are in S. By induction and since tF = #/, for at least one d such
that d € AT (where d = t’I), 7 satisfies both 6; and 6,. From Lemma 6 it follows that Z
satisfies 6. O

Lemma 9 The Search procedure satisfies the following conditions:

1. If the input sequent I' — A is valid, then the procedure Search halts with a finite
closed tree T which is a proof tree for I' — A.

2. If the input sequent I' — A is falsifiable, either Search halts with a finite counterex-
ample tree T and I' — A is falsifiable in an interpretation with finite domain, or
Search generates an infinite tree T and I' — A s falsifiable in an interpretation
with a countably infinite domain.

Proof: First, assume that the sequent I' — A is falsifiable. If the tree T was finite and
each leaf is an axiom, by Theorem 1, I' — A would be valid, a contradiction. Hence, either
T is finite and contains some path to a non axiom leaf, or T is infinite and by Konig’s

lemma contains an infinite path. In either case, we show that a Hintikka set can be found
along that path. Let U be the union of all assertions occurring in the left-hand side of each
sequent along that path and V' be the union of all assertions occurring in the right-hand
side of any such sequent. Let

S =A{T(a)|la e UYU{NT(B)| € V}
We prove the following claim.

Claim 1 S is a Hintikka set wrt the set of terms consisting of the set H of terms in
Termsysed.

Proof:

1. HO holds. Since every primitive or negated primitive assertion occurring in a sequent
occurs in every path having this sequent as source, if S contains a conjugated pair
then some sequent in the path is an axiom. This contradicts the fact that either the
path is finite and ends in a non axiom, or is an infinite path;
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2. H1 and H2 hold. This is true because the definition of a- and b-components mirrors
the inference rules:

(a) for every assertion a € U, if a belongs to I' — A and T'(«) is of type a, then
a1 and ay are added to the successor of I' — A, and thus are in 5

(b) for every assertion 3 € U, if 3 belongs to I' = A and T'(3) is of type b, then 3,
is added to the left successor of I' — A and 3, is added to the right successor
of I' = A, during the expansion step. Hence, either 3; or 3, belongs to S.

The same holds for the set V;

3. H3 holds. Every time an assertion +, such that its signed assertion is of type c, is
expanded, then for all terms in T'ermsy;.q that have not already been used with ~,

if 4 € S then 75 € S. Hence, H3 holds;

4. H4 holds. Every time an assertion 6, such that its signed assertion is of type d, is
expanded, x i1s added to Termsysq and the substitution instance is added to the
upper sequent. Hence, H4 is satisfied and the claim holds. O

By Lemma 7 there is an interpretation Z which satisfies S. This implies that 7 falsifies
r— A.

Note that H must be infinite if the tree T is infinite. Otherwise, since Search starts
with a finite sequent, every path would be finite and would end either with an axiom or a
finished sequent.

If the sequent I' — A is valid then the tree T' must be a proof tree since otherwise, the
above argument shows that I' — A is falsifiable. O

B.2 Proofs of Section 4.5

Theorem 3 (Four-valued interpolation theorem) I' — A is a valid sequent iff there
exists a constructible interpolant v of I' — A.

Proof: The (if) direction is straightforward: if + is an interpolant of I' — A, then
I' = A is valid.

(Only if) direction. If I' — A is valid then there is a proof tree T of which it is the
conclusion. We use the induction principle applied to the depth n of proof trees.

case n=0: In this case I' — A is an axiom of the form o,1" — «a,A’. v = « is an
interpolant of I' — A.
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induction step: Suppose that for every proof tree of depth n, the conclusion is valid. We
will show that still this is true for proof trees of depth n 4+ 1. Let T" be a proof tree
of depth n 4+ 1 with conclusion I' — A. Then T has one of the following forms:

form 1: 7T is of the form
T/
I'—= A

if the conclusion I' — A is obtained by application of an one-premise rule R,
where the conclusion of the proof tree T’, the sequent S, is the premise of the
rule R and I' — A is the conclusion of the rule R;
form 2: T is of the form
T/ T//
r—A

if the conclusion I' — A is obtained by application of a two-premises rule R,
where the conclusions of the proof trees T” and T, respectively the sequents S’
and S”, are the premises of the rule R and I' — A is the conclusion of the rule

R.

We proceed by case analysis on the rules of Definition 11.

case rule (M —): In this case T is of form 1, I' = A is of form (C 1 D)(¢),I' = A
and the sequent S is of form C'(¢), D(t),I" — A. By induction on tree 7", there
exists an interpolant v of S. Therefore, ~ is an interpolant of I' — A.

case rule (— M): In this case T is of form 2, I' — A is of form I' — A, (C' 1 D)(?),
S"is of form I' — A, C(¢) and S” is of form I' — A, D(¢). By induction on 7"
and T", there exist interpolant 4" of S” and ~" of S”. Let v be v/ A+". v is an
interpolant of I' — A.

case rule (U —): In this case T is of form 2, I' — A is of form (C'U D)(¢),I' — A,
S"is of form C(¢),I" — A and S” is of form D(t),I" — A. By induction on T”
and T", there exist interpolant 4" of S” and ~" of S”. Let v be v/ V ~". v is an
interpolant of I' — A.

case rule (— U): Inthiscase T'isof form I, I' = Aisof form I' — A, (CUD)(t) and
S is of form I' — A, C(t), D(t). By induction on T’ there exists an interpolant
~ of S. Therefore, v is an interpolant of I' — A.

case rule (— V): In this case T is of form 1, I' — A is of form I' — A, (VR.C')(¢)
and S is of form I', R(t,x) — A,C(x). By induction on 7" there exists an
interpolant 4’ of S. Let ~+ be following transformation of +':

1. ~" can be rewritten as (y1 op} 1) op1 (v2 oph v5) op2 .. (vn opl, 7))
such that n > 1 and (i) in every assertion occurring in +;, « occurs, (ii) ~/
can not be empty (for ¢ < n) and @ does not occur in ~/ and (iii) op;, op; €

N VE
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2. for each 5;, remove occurrences of assertion R(?,x);

3. for each ~;, replace the A and V operators in +; with the M and U operators,
respectively;

4. for each 4;, replace all assertions C'(x) occurring in 7; with C' and let ~¢ be
the obtained concept;

5. for each 77, replace it with VR.~¢.
~ is an interpolant of I' — A.

case rule (3 —): In this case T is of form 1, I' = A is of form (IR.C)(1),I' = A
and S is of form R(t,z),C(x),I' — A. By induction on 7" there exists an
interpolant 4’ of S. Let ~+ be following transformation of +':

L. ~' can be rewritten as (1 op} 1) op1 (72 oph ¥5) op2 ... (vn opl, 7L) such
that n > 1 and (i) in every assertion occurring in v;, @ occurs, (ii) v/ can not
be empty (for ¢ < n) and @ does not occur in 4/ and (iii) op;, op: € {A,V};

2. for each 5;, remove occurrences of assertion R(?,x);

3. for each ~;, replace the A and V operators in +; with the M and U operators,
respectively;

4. for each 4;, replace all assertions C'(x) occurring in 7; with C' and let ~¢ be
the obtained concept;

5. for each 77, replace it with JR.~7.
~ is an interpolant of I' — A.

case rule (— 3): In this case T'is of form 2, ' = Aisof form I' — A, (IR.C)(t), S’
is of form I' = A, (FR.C)(¢), R(t,t') and S” is of form ' — A, (FR.C)(¢), C(').
By induction on 7" and T”, there exist interpolant +" of 5" and ~" of S”. Let v
be 4" A 4”. ~ is an interpolant of I' — A.

case rule (mpr —): In this case T is of form 1, I' — A is of form
(VR.C)(t), R(t, 1), = A and S is of form (VR.C)(¢), R(t,t"),C(t),I' = A. By
induction on T’ there exists an interpolant + of S. Therefore, v is an interpolant

of ' = A. O

B.3 Proofs of Section 4.6

Theorem 4 The problem of determining the validity of a sequent I' — A is co-NP-Hard.

Proof: The proof consist in a reduction of the propositional tautological entailment
problem. Let o and 3 be two propositional formulae. The problem of determining whether
a =4 B, in standard four-valued semantics, is a co-NP-Hard problem [Patel-Schneider,
1987a], where =4 is the standard four-valued entailment relation.
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Let v be a propositional formula. Let v be the concept obtained from ~ by replacing in
~ the operators for conjunction, disjunction and negation with the operators I, LI and —,
respectively. It follows that « =4 5 iff a(a) — $°(a) is valid, where @ is an individual. O

Theorem 5 Determining the validity of a sequent I' — A is decidable. 1

We will give only a sketch of the decidability proof. The detailed proof can be easily
derived from this sketch.

First of all, we introduce the notion of generation.

Definition 43 Let x be a variable and t a term. Then t generates x, written t — x, if and
only if x is the new variable introduced by the application of the (— V) rule to (VR.C)(t).
[ |

Note, there is a infinite counterexample tree T with conclusion I' — A, if and only if there
is an infinite path p from the root, such that there is an infinite chain t — a7 — ... —
x, + ... of generated variables along that path p. Therefore, it is sufficient to “intercept”
these infinitary paths in order to get decidability

Definition 44 Let I' — A be a sequent such that (YR.C)(x) appears in A. A node labelled
I' = A s called oo-stopped if and only if, if t — x then both

1. R(t,x) can not be involved in an applicable left hand side rule (R —);

2. no right hand side rule (— R) is applicable to assertions different from (YR.C)(x).
[ |

Definition 45 A node is oo-finished if and only if it is finished or is co-stopped. 1

Definition 46 An oco-counterexample tree is a deduction tree where each leaf is co-finished
and there is at least one non axiom leaf. 1

Now we sketch out the main lemma.

Lemma 17 FEvery oo-counterexample tree with conclusion I' — A can be expanded to a
counterexample tree with conclusion I' — A.

Proof: Let T, be an oo-counterexample tree with conclusion I' — A. For each non
axiom leaf L; (there is at least one and finitely many) labelled I'y, — Ay, we know that:
if £ — x then
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1. no (R —) rule is applicable;

2. no (— R) rule different from (— V) is applicable.

Let T be the deduction tree obtained from T, by expanding completely nodes ; by the
usual rules (thus, 7" could be infinite).

Let T7, be the subtree of T such that the root of Ty, is L;. We will show that 77, is a
counterexample tree for I'y, — Ay, and , therefore, T'is a counterexample tree for I' — A.

If the depth of 17, is 0, then 17, is a one node tree labelled I'y, — Ap,. Since I'r, — Ay,
is not an axiom and no rule is applicable to it, it follows that I'y, — Ay, is falsifiable and,
thus, 17, is a counterexample tree for I', — Ap,.

Otherwise, a (— V) is applied to a (YR.C')(x) € Ay, and there is a term ¢ such that
t +— x, and there is a R'(t,z) € I';, and no R"(t,x) € I'y, is usable in a (R —) rule.
Therefore, we have that 77, is the tree

!
SL,

F/L,’ R(t,2), R(x,y) — A/L,a C(y)

T R(t,) — A}, (YR.C)(x)

Let T7 be the subtree of 77, such that the root of 17 1is labelled 57 . Let S; be the
sequent Iz, R'(t,2) — A'r,,(VR.C)(x) (which is the sequent labelled by L;) and let S,
be the sequent F/;Zﬂ R(t,x), R(x,y) — A’r,,C(y). We have

L. no left rule (R —) is applicable to Si;

2. no left rule (R —) is applicable to Sy;

3. AV, R'(t, )} N {A'L,, (VR.C)(x)} = 0;

4. since y is a new variable, {I".., R'(t,x), R(x,y)} N {A'z,, (VR.C)(z),C(y)}

0;

5. since no R’(t,x) € I'g, is usable in a (R —) rule, no C(y) will be generated on the
left hand side along an infinitary path of 77 .

Therefore, there is a possible infinite path from 77 from which a Hintikka set can be
constructed, as for Lemma 9, such that 77 is a counterexample tree for S7. and, thus, 17,
is a counterexample tree for I',, — Az, O
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Therefore,

Lemma 18 If the input sequent I' — A is falsifiable, Search halts with a finite oco-
counterexample tree T and I' — A is falsifiable in an interpretation with possible infinite
domain.

Proof: First, note that Search halts since no infinite path p from the root, such that
there is an infinite chain ¢ — 27 — ... +— 2, — ... of generated variables along that path

p, is generated by Search.

Now assume that the sequent I' — A is falsifiable. If the tree T was finite and each
leaf is an axiom, by Theorem 1, I' — A would be valid, a contradiction. Hence, T is finite
and contains some path to a non axiom oo-finished leaf. From Lemma 17 follows that T is
a counterexample tree for I' — A from which an Hintikka set can be build as for Lemma

9 falsifying I' — A.

If the sequent I' — A is valid then the tree T' must be a proof tree since otherwise, the
above argument shows that I' — A is falsifiable. O

B.4 Proofs of Section 5.2

In the following, since disjunction can be expressed in terms of negation and conjunction,
and universal quantification on roles ca be expressed in terms of negation and existential
quantification on roles, whenever possible we will leave out case proofs involving disjunction
and universal quantification.

In the following, let (X£,€Q) be an MIRLOG knowledge base, let 7 be a model of (X,Q), R
a role, a, b individuals and a closed. With R (a), B5(a), and RL(a,z) (for = € {t, f}), we

indicate respectively the sets

RE(a) = {y(b): X R R(a,b)}
Rg(a) = {y(b): X R(a,b)}
Ri(a,t) = {peA:te R (y(a),p)}
Ri(a,f) = {peA:fe R (v(a),p)}

By definition of model Z, since a is closed it follows easily that

TN TN
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Moreover, since a is closed it happens that for each primitive concept A

A(y(a) = {t} or A*(v(a) = {f}

Similar for roles R(a,b).
As last, it can be easily verified that if b does not appear in ¥ then ¥ & R(a,b).

Propositions 6 to 11 follow from the following lemmas.

Lemma 19 Let (X,9Q) be a KB, Cl(a) € Q and o an assertion C(a) or R(a,b), such that
T is a model of (¥,9Q). Then the following hold:

1. T satisfies a or I f-satisfies o, for any quantifier free C' and for any R;

2. if (2,9) is completely closed, then T satisfies o or I f-satisfies «, for any C' and R.

Proof: The proof is given on induction on the structure of a. Let Z be a model of

(3, 0),

case o = A(a) : If 7 satisfies A(a) then we are done. Suppose 7 does not satisfy a. Then
there exists a model of ¥ such that ¢ & AZ(y(a)). By definition, it follows that
f € AT(~y(a)). Hence T f-satisfies A(a).

case a = P(a,b) : Similar as above.

case o = =('(a) : If T satisfies a then we are done. Suppose 7 does not satisfy o. Hence,
7 does not f-satisfy C'(a). By induction on C, it follows that Z satisfies C'(a), hence
7 f-satisfies ~C'(a).

case a = = P(a,b) : Similar as above.

case a = (C' M D)(a) : Straightforward.
This completes the first part.

case o = (FR.C)(a) : If T satisfies o then we are done. Suppose Z does not satisfy a.
Since a is closed it follows that Rf(a) = R%(a,t). Let b be an individual such that
v(b) € Rf(a). Hence, b appears in X and ¢ ¢ CZ(y(b)). Since b is closed, by induction
on C, it follows that 7 f-satisfies C'(b). Hence, 7 f-satisfies . O

Lemma 20 Let (X,9Q) be a KB, Cl(a) € Q and o an assertion C(a) or R(a,b), such that
T is a model of (¥,9Q). Then the following hold:
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1. T satisfies (f-satisfies) o if and only if all models of (X,8) satisfy (f-satisfy) «, for
any quantifier free C' and R;

2. 4f (2,9) is completely closed, then T satisfies (f-satisfies) o if and only if all models
of (¥,Q) satisfy (f-satisfy) «, for any C' and R.

Proof:

<) Trivial.
=) The proof is given on induction on the structure of . Let Z be a model of (X, ).

case a = A(a) : Since 7 satisfies A(a) it follows that ¢ € AZ(vy(a)). Since a is closed,
by definition, ¢ € A7(vy(a)) for all models J of ¥ and, thus, for all models of
(3,9). Similar for f-satisfiability.

case a = P(a,b) : Similar as above.

case o = =('(a) : Since 7 satisfies ~C'(a), it follows that 7 f-satisfies C'(a). Since a
is closed, by induction it follows that all models of (X, ) f-satisfy C'(a). Hence,
all models of (X, Q) satisfy =C'(a). Similar for f-satisfaction.

case a = = P(a,b) : Similar as above.

case a = (C' M D)(a) : Straightforward.

This completes the first part of the proposition.

case a = (FR.C')(a) : Since 7 satisfies a and since a is closed, it follows that |R¥(a)| >
1 and t € CT((b)), for some v(b) € R¥(a). Since a is closed it follows that
R¥(a) = Ri(a,t) and, thus, b appears in X. Hence b is closed. Therefore, by
induction on R and C, for all models J of (¥,9), t € C7(v(b)). Hence, all
models of (¥, Q) satisfy . O

B.5 Proofs of Section 5.3

Lemma 12 No axiom is falsifiable. Equivalently, every axiom is valid.

Proof:  The proof for a,I' —(zq) o, A, I' =(zq) T(0),A and L (0),I' =y A is
straightforward.

Let Z be an interpretations which (X, Q)-satisfies I'.” We show that if C1(a) € 2 and
Y % Ala), then I' — (s ) ~A(a), Ais valid. Since a is closed and (Z, M(X)) satisfies C1(a),
it follows that AZ(y(a)) = {f}. Therefore, 7 satisfies =A(a).

Finally, the proof for axiom I' — (g q) =P (a,b), A is similar. O
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Lemma 13 For each of the rules in Definition 35, the conclusion of a rule is falsifiable iff
at least one of the premises of the rule is falsifiable. Fquivalently, the conclusion of a rule
is valid iff all premises of the rule are valid.

Proof: The proof consists in a case analysis on the rules of Definition 35. Remember

that an interpretation 7 falsifies a sequent I' — (5 q) A iff Z (X, Q)-satisfies I' and T does
not satisfy any of the assertional formulae in A.

We will give only a proof for significant cases.

case

case

case

case

rule (Lci—): Suppose that Cl(a) € Q and ¥ & A(a). Therefore, every epistemic
model (Z, M(X)) satisfying C1(a) is such that AZ(y(a)) = {f}. Hence, there could
no interpretation satisfying A(a). Therefore, A(a),I' —(z o) A is valid. Moreover,
L (a),T =0 A is valid.

rule (Lcy—): Straightforward, observing that for a closed individual a, AZ(v(a)) =

{f} or A(y(a)) = {t}.
rule (— V): The case C1l(0) & ) is as for standard four-valued semantics.

Suppose C1l(o) € Q. The case 6 = T(a) is straightforward. In fact, there are no role
fillers for R(a), hence (VR.C')(a) = T(a).

Let us consider the case 6 is C'(a1) A ... A C(a,), where a; € O, with (i > 0), are all
the individuals such that ¥ = P(a,a;) (if R = P), else ¥ & P(a, a;)

=) Suppose that T falsifies the conclusion I' —(x.q) A,(VR.C)(a). Therefore, T
(3, Q)-satisfies I', does not satisfy any assertional formula in A and does not
satisfy (VR.C)(a). Since a is closed there is an individual a; such that ¥ |x
Pla,a;) (if R= P), else ¥ & P(a,a;)) and T does not satisfy C'(a;). Therefore,
T falsifies IV, —(x 0y A, 6.

<) Straightforward.

rule (3 —): The case C1l(0) & 2 is as for standard four-valued semantics.

Suppose C1l(o) € 2. The case v =L (a) is straightforward. In fact, in this case there
are no role fillers for R(a), hence (IR.C)(a) =L (a).

Let us consider the case v is (R(0,a1) A C(a1)) V ...V (R(o,a,) A C(ay)), where
a; € O, with (¢ > 0), are all the individuals such that ¥ = P(a,a;) (if R = P), else
Y % P(a,a;)). Suppose that 7 (X, )-satisfies I'. It easy to see that 7 satisfies ~ iff
7 satisfies (3R.C')(a). Hence, the conclusion of the rule is falsifiable iff the premise
is falsifiable.

Theorem 6 (Soundness) If a sequent I' — (5 .q) A is provable, then it is valid.
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Proof: Tt I' —(zq) A is provable then there is a proof tree T' of which it is the
conclusion. We use the induction principle applied to the depth n of proof trees.

case n=0: In this case I' —(x ) Ais an axiom. From Lemma 12 it follows that I' — (g o) A
1s valid.

induction step: Suppose that for every proof tree of depth n, the conclusion is valid. We
will show that still this is true for proof trees of depth n 4+ 1. Let T" be a proof tree
of depth n + 1 with conclusion I' —(z q) A.

L. If the conclusion I' — (g gy A is obtained by application of an one-premise rule

R, then T is of the form
T/
F _>(E,Q) A
where the conclusion of the proof tree T’, the sequent S, is the premise of the
rule R and I' — (g gy A is the conclusion of the rule R: i.c. rule R is of type

R S
F _>(E,Q) A

Since T" is a proof tree of depth n, by induction it follows that the sequent S is
valid. Therefore from Lemma 13 it follows that I' — (£ q) A is valid.

2. If the conclusion I' —(x,q) A is obtained by application of a two-premises rule
R then T is of the form
T/ T//
T _>(E,Q) A
where the conclusions of the proof trees T” and T, respectively the sequents S’
and 5", are the premises of the rule R and I' — (s o) A is the conclusion of the
rule R: i.e. rule R is of type

R Sl S//
F _>(E,Q) A

Since T" and T" are proof trees of depth less or equal than n, by induction
it follows that the sequents 5" and S” are valid. Therefore from Lemma 13 it
follows that I' =y gy A is valid. O

Lemma 14 Let T be an interpretation. Then:

1. for any signed assertional formula v* of type a, T satisfies v* iff T satisfies both ~{
and 74

2. for any signed assertion v° of type b, T satisfies v* iff T satisfies 72 or +5;
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3. for any signed assertion v° of type ¢, T satisfies v¢ iff if T satisfies v then T satisfies
7S, for every p in place of o';
4. for any signed assertion 4% of type d, T satisfies v iff T satisfies v and ~, for at
least one p in place of 0.
Proof: The proof is as for the same lemma for standard four-valued semantics. O
Lemma 15 FEvery Hintikka set S wrt a set of objects H is satisfiable.

Proof: The interpretation Z is defined as follows.

1. T is injective on objects, i.e. of # oL, ifo + 0';

2. For every primitive assertion and negated primitive assertion, for all parameters
/
PP €A,

te Af(p) it T
feAllp) it T
te Pi(p,p) iff
fePrpp) iff

(A(0)) € S and o =p

((mA)(0)) € S and of =p
T(P(0,0)) € S and o = p, ot =y
T(=P(p,p')) € S and of = p, 0" = p'

Note that neither T(L (a)) nor NT(T(a)) are in S. By condition HO, it is easy to see that
7 is an interpretation.

We now prove using the induction principle for assertional formulae that 7 satisfies v
for every signed assertional formulae v € 5.

Assume that T'(y) € S, where v is a primitive assertion or a negated primitive assertion.

Then by definition, Z satisfies T'(7).

Similarly, if NT(v) € S, where v is a primitive assertion or a negated primitive asser-

tion, then 7 satisfies NT'(7).
If T(T(a)) € S the by definition 7 satisfies T(a). similar for NT(L (a)) € S.

If a type-a signed assertion 4 is in S, then by condition H1, both 7{ and ~§ are in S.
By induction, 7 satisfies both 4{ and ~3. Therefore, by Lemma 14, T satisfies «.

The case of type-b signed assertion 4° is similar.

It a type-c assertional formula 4 is in 5, then then by condition H3, for every objects
o€ H,if v{1sin S then 4§ is in S. By induction and definition of Z on objects, for every
p, if 7 satisfies 4§ then T satisfies 5. From Lemma 14 it follows that Z satisfies v°.

Similar for type-d assertional formulae 4. O
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Lemma 16 The Search procedure satisfies the following conditions:

1. If the input sequent I' — s ) A is valid, then the procedure Search halts with a finite
closed tree T' which is a proof tree for I' —(z a0y A.

2. If the input sequent I' —(z qy A is falsifiable, either Search halts with a finite coun-
terexample tree T and I' —(z gy A is falsifiable, or Search generates an infinite tree

T and ' —(z .0y A is falsifiable.

Proof:  First, assume that the sequent I' —(z ) A is falsifiable. If the tree T" was finite
and each leaf is an axiom, by Theorem 6, I' — gy A would be valid, a contradiction.

Hence, either T' is finite and contains some path to a non axiom leaf, or T is infinite and
by Konig’s lemma contains an infinite path. In either case, we show that a Hintikka set
can be found along that path. Let U be the union of all assertional formulae occurring in
the left-hand side of each sequent along that path and V' be the union of all assertional
formulae occurring in the right-hand side of any such sequent. Let

§S={T()l e UJU{NT(9)|6 € V}
We prove the following claim.

Claim 2 S is a Hintikka set wrt the set of objects consisting of the set H of objects in
Termsysed.

Proof:

1. HO holds. Since every primitive or negated primitive assertion occurring in a sequent
occurs in every path having this sequent as source, if S contains a conjugated pair
then some sequent in the path is an axiom. This contradicts the fact that either
the path is finite and ends in a non axiom, or is an infinite path. Similarly, neither

T(L (a)) nor NT(T(a)) are in S.

2. H1 and H2 hold. This is true because the definition of a-components and b-components
mirrors the inference rules:

(a) for every assertional formulae v* € U, if 4% belongs to I' =z gy A and T'(y%) is
of type a, then ~{ and v5 are added to the successor of I' — (s ) A, and thus
are in S

(b) for every assertional formulae 4" € U, if 4” belongs to I' —(z.0) A and T'(4") is
of type b, then 4? is added to the left successor of I' —(z,0) A and 7% is added
to the right successor of I' —(x ) A, during the expansion step. Hence, either
7% or 4% belongs to S.
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The same holds for the set V;

3. H3 holds. Every time an assertional formulae ~¢, such that its signed assertional
formulae is of type ¢, is expanded, then for all objects in T'ermsys.q that have not
already been used with ~¢ if vf € S then ~5 € S. Hence, H3 holds;

4. H4 holds. Every time an assertion 7%, such that its signed assertion is of type d, is
expanded, then the following hold:

(a) if C1(0) € © then x is added to Termsysq and the instance is added to the
upper sequent;

(b) otherwise, since the path does not end into an axiom, neither v =L (o) nor
6 = T(o), the particular case wrt an individual is added to the upper sequent.

Hence, H4 is satisfied and the claim holds. O

By Lemma 15 there is an interpretation 7 which satisfies S. Note that by definition of
sequent, ¥ C I', hence 7 satisfies . By construction of S and from the rules, it follows

that 7 (X, (2)-satisfies I'. This implies that T falsifies I' — (5 o) A.

Note that H must be infinite if the tree T is infinite. Otherwise, since Search starts
with a finite sequent, every path would be finite and would end either with an axiom or a
finished sequent.

If the sequent I' — (g gy A is valid then the tree T" must be a proof tree since otherwise,
the above argument shows that I' — (g q) A is falsifiable. O

B.6 Proofs of Section 5.4

Theorem 8 (Four-valued interpolation theorem) I' —(x o) A is a valid sequent iff
one of the following cases hold:

1. there exists a constructible interpolant v* of I' =z q) A;
2. T is not (X, )-satisfiable;
3. (Vsea) = T(a), for some a. 1

Proof: The (if) direction is straightforward.

(Only if ) direction. If I' —(x gy A is valid then there is a proof tree T' of which it is the
conclusion. We use the induction principle applied to the depth n of proof trees.

case n=0: In this case I' —(x q) A is an axiom.
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case o, ' =z ) @, A : 4" = ais an interpolant of I' = g) A

I' =) T(0),A : therefore, case (3) of the theorem holds;

L (0),I' =(xq) A : therefore, case (2) of the theorem holds;

I' = ~A(a), A : v* = =A(a) is an interpolant of I' —(x q) A;

I' = ~Pla,b),A : v° = =P(a,b) is an interpolant of I' — (5 o) A.

induction step: Suppose that for every proof tree of depth n, the conclusion is valid. We
will show that still this is true for proof trees of depth n 4+ 1. Let T" be a proof tree
of depth n + 1 with conclusion I' — (g gy A. Then T' has one of the following forms:

form 1: 7T is of the form
T/
F _>(E,Q) A

if the conclusion I' —(x gy A is obtained by application of an one-premise rule
R, where the conclusion of the proof tree T", the sequent S, is the premise of
the rule R and I' — (g ) A is the conclusion of the rule R;
form 2: T is of the form
T/ T//
T _>(E,Q) A

if the conclusion I' —(x,q) A is obtained by application of a two-premises rule
R, where the conclusions of the proof trees T' and T, respectively the sequents
S" and S”, are the premises of the rule 2 and I' — (s ) A is the conclusion of

the rule R.

We proceed by case analysis on the rules of Definition 35.

case rule (A —): In this case T is of form 1, I’ —x,0) Aisof form YA, T' —(z0) A
and the sequent S is of form v,6,I' —(z g) A. By induction on tree 7", one of
the three cases of the theorem holds for v,6,I' — ) A. Hence, one of the
three cases of the theorem holds for vy A 6,I' —(x .0y A, too.

case rule (— A): Inthiscase T'is of form 2, I' =z ) Aisof form I' —(z q) A, yA6,
S'is of form I' —(x gy A,y and 5" is of form I' =z ) A, 4. By induction on 7"
and 7", one of the three cases of the theorem holds. Therefore,

L. if the antecedent of 5" is not (¥, Q)-satisfiable, then the antecedent of the
conclusion is not (¥, )-satisfiable;

2. if both consequents of S” and S” are equivalent to T(a), for some «a, then
the consequent of the conclusion is equivalent to T(a);

3. otherwise, if the consequent of S” is not equivalent to T(a), then there exist
interpolant 4" of S’; if the consequent of S” is not equivalent to T(a), then
there exist interpolant ~" of S”. Let v* be 4/ A 4”. 4* is an interpolant of
I' =0 A
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Hence, one of the three cases holds for I' — (g q) A.

case rule (V —): In this case T'is of form 2, I’ —x,0) Alisof form yVo,I' —(z.q) A,
S"is of form 7, I' —(x.0) A and 5" is of form 6,I" —(x o) A. By induction on 7"
and 7", one of the three cases of the theorem holds. Therefore,

L. if both the antecedents of S” and S” are not (X, 2)-satisfiable, then the
antecedent of the conclusion is not (X, 2)-satisfiable;

2. if the consequent of S’ is equivalent to T («a), for some a, then the consequent
of the conclusion is equivalent to T (a);

3. otherwise, if the antecedent of S” is (X, Q)-satisfiable, then there exist in-
terpolant +" of S’; if the the antecedent of S” is is (X, Q)-satisfiable, then
there exist interpolant " of S”. Let v* be 4/ vV 4”. 4* is an interpolant of
' =0 A.

Hence, one of the three cases holds for I' — (g q) A.

case rule (— V): Similar to case rule (A —).

case rule (Lo1—): Case (2) of the theorem holds.

case rule (Loy—): Case (2) of the theorem holds.

case rule (Lp—): Case (2) of the theorem holds.

case rule (Lpy—): Case (2) of the theorem holds.

case rule (M —): Similar to case rule (A —).

case rule (— M): Similar to case rule (— A).

case rule (U —): Similar to case rule (V —).

case rule (— U): Similar to case rule (— V).

case rule (V —): In this case 1" is of form 1, I' =5 gy A is of form

(1), R(0,0'),I' =(xq) A and the sequent S is of form

(VR.C)(t), R(0,0"),C(d'),I' =z 0y A. By induction on tree 1", one of the three
cases of the theorem holds for S’. Hence, one of the three cases of the theorem
holds for the conclusion, too.

case rule (— J): Similar to the case above.

case rule (— V): In this case T is of form 1, I' =gy A is of form I' — (5
A, (VR.C)(0) and S is of form I" —(zq) A, 6.
By induction on 1” one of the three cases of the theorem holds. Therefore,
1. if the antecedent of S is not (X, )-satisfiable, then the antecedent of the
conclusion is not (¥, )-satisfiable;
2. if the consequent of S is equivalent to T («), for some a, then the consequent
of S is equivalent to T (a);
otherwise, there exists an interpolant 4" of S. If C1l(o) € © then proceed as
follows.

Let ~* be following transformation of ~':
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1. ~" can be rewritten as (y1 op} 1) op1 (v2 oph %) op2 .. (vn opl, 7))
such that n > 1 and (i) in every assertion occurring in +;, « occurs, (ii) !

can not be empty (for ¢ < n) and @ does not occur in 7/ and (iii) op;, op} €
{A V]
2. for each 5;, remove occurrences of assertion R(?,x);

3. for each ~;, replace the A and V operators in +; with the M and U operators,
respectively;

4. for each 4;, replace all assertions C'(x) occurring in 7; with C' and let ~¢ be
the obtained concept;

5. for each ~¢, replace it with VR.4¢.

v is an interpolant of I' —(x q) A.
On the other hand, if C1(0) € Q then v* = 4/, is an interpolant of I' =y gy A.
Therefore, one of the three cases of the theorem holds.

case rule (3 —): Inthiscase T'isof form 1, I' =y gy Aisof form (IR.C)(0),I' —(xq)

A and S is of form v, I" =z o) A. By induction on 7" one of the three cases of
the theorem holds. Therefore,

1. if the antecedent of S is not (X, )-satisfiable, then the antecedent of the
conclusion is not (¥, )-satisfiable;
2. if the consequent of S is equivalent to T («), for some a, then the consequent

of S is equivalent to T (a);

otherwise, there exists an interpolant 4" of S. If C1l(o) € © then proceed as
follows. Let v* be following transformation of ~":

L. ~' can be rewritten as (1 op} 1) op1 (72 oph ¥5) op2 ... (vn opl, 7L) such
that n > 1 and (i) in every assertion occurring in v;, @ occurs, (ii) v/ can not

be empty (for ¢ < n) and @ does not occur in 4/ and (iii) op;, op; € {A,V};
2. for each 5;, remove occurrences of assertion R(?,x);

3. for each ~;, replace the A and V operators in +; with the M and U operators,
respectively;

4. for each 4;, replace all assertions C'(x) occurring in 7; with C' and let ~¢ be
the obtained concept;

5. for each 77, replace it with JR.~7.
7" is an interpolant of I' — (g q) A.
On the other hand, if C1(0) € Q then v* = 4/, is an interpolant of I' =y gy A.

Therefore, one of the three cases of the theorem holds. O
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