Research Works in UJF

Qiang Pu 11-07-2012

Research on Mobile Tourism -especially on LBS

- Services become ubiquitous
- Information systems are now challenged
 - to locate and deliver the right service
 - to the right person
 - at the right time and location

Research 1: Semantic Clustering Reliability

- User (information) cluster is useful for
 - Analyzing the similarities between user's interest and information that service provides
 - Comparing different interest among users
 - Recommending information that comes from the same cluster with users
- The quality of the clustering?
 - Proposed a semantic clustering using ICA
 - ICA: viewing a document as an interaction of a set of independent hidden topics,

	\boldsymbol{x}_1	\boldsymbol{x}_2	•••	\boldsymbol{x}_n
C_1	p_{11}	p_{12}	•••	p_{1n}
C_2	p_{21}	p_{22}		p_{2n}
÷	÷	÷		÷
C_k	p_{k1}	p_{k2}		p_{kn}

Figure 1. Semantic clustering matrix.

- Problems:
 - most ICA algorithms are stochastic both on statistics and on algorithms
 - So the estimates of the independent components of a single run of an ICA algorithm cannot be trusted

- Contribution:
 - The evaluation process of reliability of semantic clustering can help find natural topic clusters in a set of documents
 - In IR, the language model is better estimated on the documents in the natural clusters that are closely related to a user's information need

Research 2: Mobile Geographic Web Search Personalization

- "one-size-fits-all" of most information retrieval systems are not specially designed for mobile users
- Mobile personalized web search: for distinguishing mobile user's personal different search interest.

- In our research:
 - Considered user's location information to do a geographic query expansion
 - within language modeling framework, presented an approach to personalizing web search for mobile users
 - a user mixed model estimated by:
 - activated ontological topic model (from ODP)
 - user interest model
 - re-rank initial web search results from geographic query expansion

Contribution

- Improvements comes from the consideration of
 - geographic information
 - ontological topic information
 - user interests
 - to find more relevant documents on the top list of retrieval results for satisfying mobile user's personal information need

Research 3: Implicit Location Based Recommendation for Mobile Users

Figure 1. Scenario of location based information recommendation according to two circles

LRS: Location Based ServiceSQ: Skyline QueryIR: Information Retrieval

Figure 2. Architecture of LRS-SQIR system

Contribution

- The combination of using
 - skyline query
 - information retrieval
 - to do an implicit location-based personalized recommendation
 - without user's providing explicit preference or query

Current Research 4: Shortest path (lowest cost)

- Shortest path (lowest cost) in road network
 - Using graphic theory
 - Designing its algorithm

Figure 1. Range query w.r.t. to two constraints

Thanks!