Recommender systems

Nathalie Denos Mosig IAR December 5th, 2016 15:30-17:00

Personalize / Recommend

Why recommend

- increasing value of knowing
 - the right information
 - at the right moment
 - as soon as it is available
- increasing amount
 - of available information,
 - of information consumption

The paradox of choice – Barry Schwartz (2005) The long tail – Chris Anderson (2008)

The value of recommendation

- Google News: more clickthrough

- Google News: more clickthrou
 Amazon: more sales
 Netflix: more movies watched

 at least many movies that are w recommended - at least many movies that are watched were

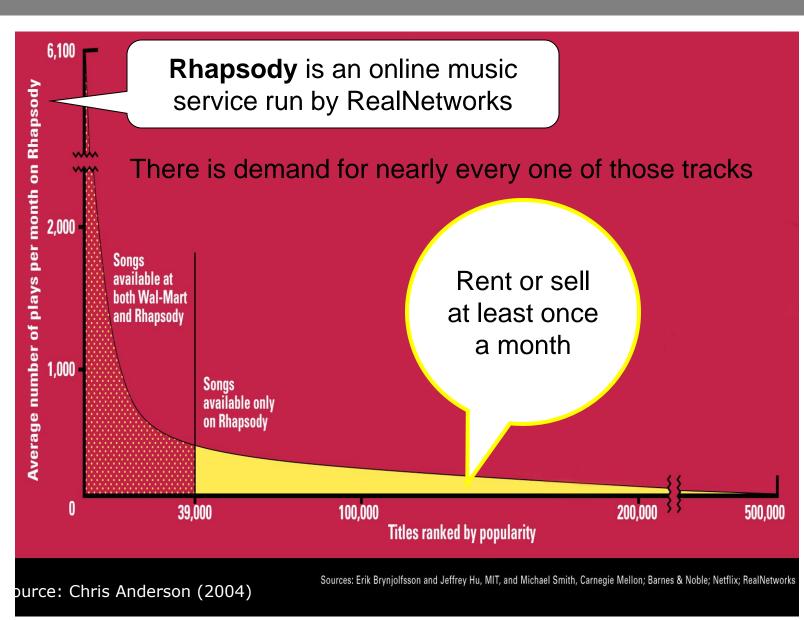
From scarcity to abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also for: TV networks, movie theaters, musicians,...
- The web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
 - More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air (1998) made Touching the Void (1988) a bestseller...

Recommender systems

based on buying patterns

The Long Tail



Searching, Filtering, Recommending

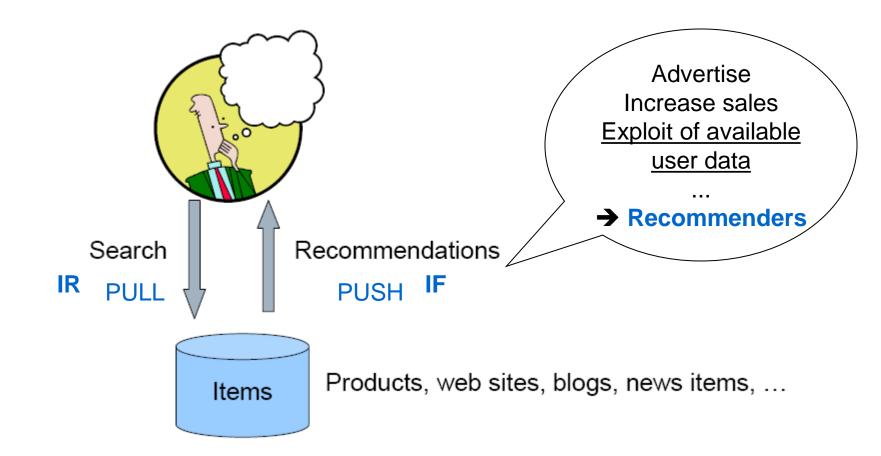
Filtering / recommendation approaches

Personalization / Recommendation

Personalized information access

- Personalized information access
 personalized information retrieval
 information filtering ↔ recommendation
 Recommendation: no query

IR vs IF: PULL and PUSH

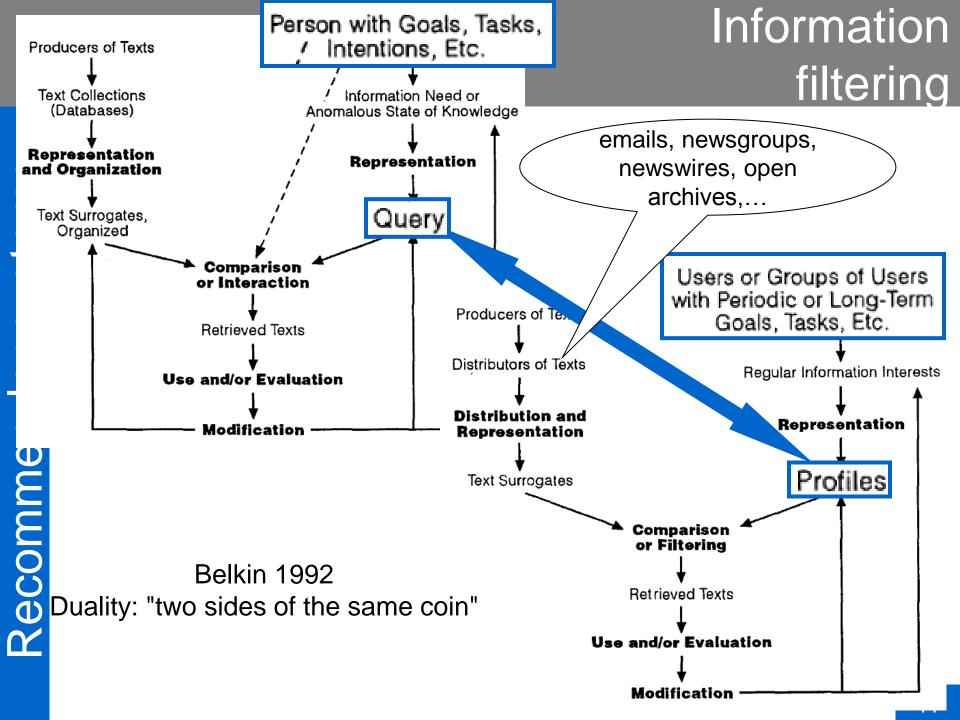


History

- Information filtering
 - -~1985, email filtering (junk mail)
 - Naming/clarifying:
 - Nick Belkin 1992, Doug Oard 1995

Belkin, N. J. and Croft, W. B. 1992. Information filtering and information retrieval: two sides of the same coin?. Commun. ACM 35, 12 (Dec. 1992), 29-38.

- A variety of processes involving the delivery of information to people who need it
- Generally, the goal of an information filtering system is to sort through large volumes of dynamically generated information and present to the user those which are likely to satisfy his or her information requirement.
- 1st ACM RecSys conference 2007



Filtering > Content-based Recommenders

- Content-based recommendation...
 - ... is an outgrowth and continuation of information filtering research (Belkin & Croft 1992)
 - » Burke 02
 - But…
 - the collaborative approach came first
 - born in 1992 > recommending Usenet news,...
 - David Goldberg, David Nichols, Brian Oki, and Douglas Terry, Using collaborative filtering to weave an information tapestry, Communications of the ACM, vol. 35, No. 12, 1992, p. 61-70.
 - Konstan, J. A. Miller, B. N. Maltz, D. Herlocker, J. L. & Gordon, L. R. Riedl, J. GroupLens: Applying Collaborative Filtering to Usenet News' in Special section: recommendation systems in CACM March 1997, Vol. 40, No. 3, pp77-87.

Recommender systems today...

Defined in a very broad way (Burke 2002)

Any system that

• produces individualized recommendations as output,

or

- has the effect of guiding the user in a personalized way to interesting or useful objects in a large space of possible options
- Fully integrated in e-business Web sites
 - > users are often "customers"
 - > items are often "products"

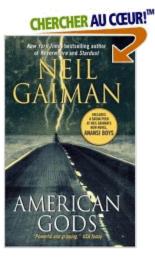
Recommender systems

Recommendation Types

- Editorial
- - Top 10, Most Popular, Recent Uploads
- Tailored to individual users

Amazon

Personalized?



American Gods (Poche) de <u>Neil Gaiman</u> (8 évaluations client) Notre prix : EUR 6,67 LIVRAISON GRATUITE <u>Voir les dé</u>

Disponibilité : En stock. Expédié et vendu par Amazon.fr.

Vous désirez recevoir cet article le lundi 13 novembr dans les 4 h et 1 min et choisissez la **livraison Éclair** sur v <u>détails</u>

26 neufs et d'occasion à partir de EUR 3,95

Rechercher dans ce livre

Deux, c'est mieux !

Achetez ce livre et Neverwhere de Neil Gaiman !

Prix éditeur : EUR 17,37 Notre prix : EUR 16,84

🚙 internautes ayant acheté cet article ont également a cheté :

<u>Neverwhere</u> de Neil Gaiman

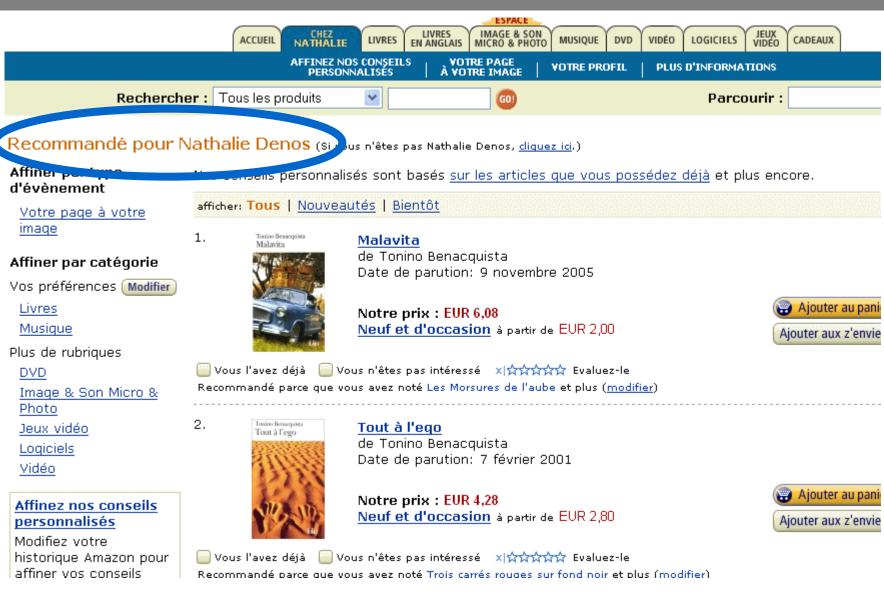
Stardust de Neil Gaiman

Good Omens de Terry Pratchett

Découvrez des articles similaires : Livres (50)

http://www.amazon.fr/

Amazon



http://www.amazon.fr/ (connecté)

MovieLens

Personalized

	redictions for you ຈ	Your Ratings	Movie Information	Wish List
4	*****	Not seen 💌	About a Boy (2002) DVD, VHS, info imdb Comedy, Drama	⊻ ≉
*	*****	Not seen 💌 Not seen	Chicago (2002) info imdb Comedy, Crime, Drama, Musical	☑ 🖉
*	*****	0.5 stars 1.0 stars 1.5 stars 2.0 stars	And Your Mother Too (Y Tu Mamá También) (2001) DVD, VHS, info imdb Comedy, Drama, Romance	
X	*****	2.5 stars 3.0 stars 2.5 stars 4.0 star	Monsoon Wedding (2001) DVD, VHS, info imdb Comedy, Romance	
*	*****	★★ 4.5 stars 5.0 star	Talk to Her (Hable con Ella) (2002) info imdb Comedy, Drama, Romance	

http://movielens.umn.edu

The recommender problem

- Estimate a utility function that automatically predicts how a user will like an item
 - Based upon... whatever is available!
 - past behavior
 - relations to other users
 - item similarity
 - context

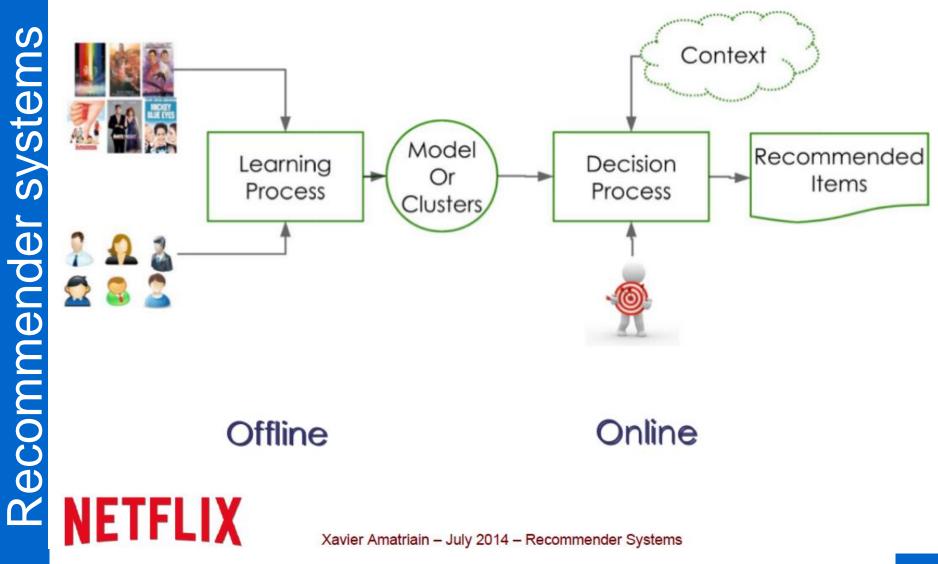
The recommender problem

- U = set of Users (customers,...)
- - -e.g., 0-5 stars, real number in [0,1]
- U = set of Users (customers)
 I = set of Items
 Utility function *u*: U x I → R

 R = set of ratings
 R is a totally ordered set
 e.g., 0-5 stars, real number in

 for each current user, choos maximize u for each current user, choose items that

A two-step process



What matters

- What matters for recommenders?
 learning process
 user interface, user interaction (user studies)
 information browsing, presentation, visualization, ...

Approaches to recommendation

- Collaborative Filtering: based on users p behavior only

 User-based: find similar users and recomm what they liked
 Item-based: find similar items to those that previously liked

 Content-based: based on item features
 Demographic: based on user features
 Social recommendations: trust-based
 Hybrid: combine Collaborative Filtering: based on users past
 - User-based: find similar users and recommend
 - Item-based: find similar items to those that were

Recommender systems

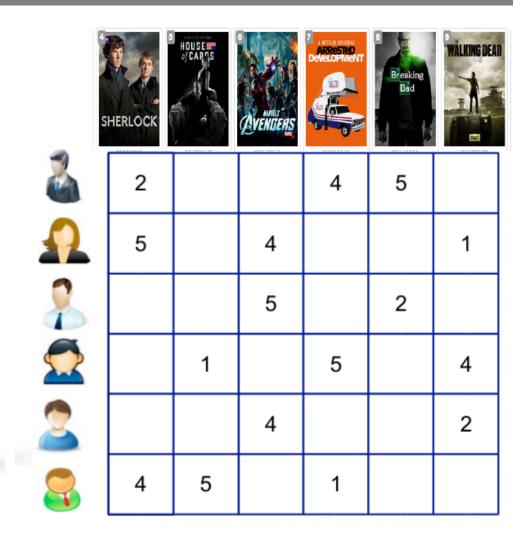
The recommender problem

- U = set of Users (customers,...)
- - -e.g., 0-5 stars, real number in [0,1]
- U = set of Users (customers)
 I = set of Items
 Utility function *u*: U x I → R

 R = set of ratings
 R is a totally ordered set
 e.g., 0-5 stars, real number in

 for each current user, choos maximize u for each current user, choose items that

Utility matrix



NETFLIX

Key Problems

- Gathering "known" ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods

Gathering Ratings

- Explicit
 - Ask people to rate items
 - Doesn't work well in practice people can't be bothered
- Implicit
 - Learn ratings from user actions
 - e.g., purchase implies high rating
 - What about low ratings?

Favor implicit: easier to get, less noisy

Extrapolating utilities

- Key problem: matrix U is sparse
 - most people have not rated most items Netflix prize (1M\$ 2009)
 - 500 000 users x 17 000 items
 - 8 500 M slots
 - 100 M ratings
 - Main approaches
 - Content-based
 - Collaborative

Content-based filtering

Content-based recommenders

- Main idea: recommend items i to user u similar to previous items rated highly by u
 - Movie recommendations
 - recommend movies with same actor(s), director, genre, …
- Websites, blogs, news
 - recommend other sites with "similar" content

Item Profiles

- For each item, create an item profile
- - movies: author, title, actor, director,...
 - text: set of "important" words in document
- How to pick important words?
- For each item, create an it
 Profile is a set of features

 movies: author, title, actor,
 text: set of "important" word

 How to pick important wor

 Usual heuristic is TF.IDF (T Inverse Doc Frequency) – Usual heuristic is TF.IDF (Term Frequency times

TF.IDF

 f_{ij} = frequency of term t_i in document d_j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

$TF_{ij} = \text{frequency of term t_i in document d_j}$ $TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$ $n_i = \text{number of docs that mention term i}$

N = total number of docs $IDF_i = \log \frac{N}{n_i}$ TF.IDF score $w_{ij} = TF_{ij} \times IDF_i$ Doc profile = set of words with scores, together with their s Doc profile = set of words with highest TF.IDF scores, together with their scores

User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - . . .
 - Prediction heuristic
 - Given user profile u and item profile i, estimate u(u,i) = cos(u,i) = u.i/(|u||i|)

Model-based approaches

- Recommender systems
- For each user, learn a classifier that classifies items into rating classes
 - liked by user and not liked by user
 - -e.g., Bayesian, regression, SVM
 - Apply classifier to each item to find recommendation candidates

Limitations of content-based approach

- Recommender systems
 - Finding the appropriate features
 - e.g., images, movies, music
 - Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Recommendations for new users
 - How to build a profile?

Collaborative filtering

Collaborative Filtering

- given target user u

- given target user u
 find set D of other users whose ratings are "similar" to u's ratings (neighbors)
 identify the items neighbour users liked
 generate a prediction (rating) that would be given by u to each of these items
 recommend the top N items generate a prediction (rating) that would be

Ingredients for CF

- List of m Users and a list of n Items
- Each user has a list of items with associated opinion
 - Explicit opinion a rating score
 - Sometime the rating is implicitly purchase records or listen to tracks
- Active user for whom the CF prediction task is performed
- Metric for measuring similarity between users
- Method for selecting a subset of neighbors
- Method for predicting a rating for items not currently rated by the active user.

Similar users

- Let r_x be the vector of user x's ratings

$$-\sin(x,y) = \cos(r_x, r_y)$$

- Pearson correlation coefficient
 - $-S_{xv}$ = items rated by both users x and y

• Let
$$r_x$$
 be the vector of user x's ratings
• Cosine similarity measure
 $- sim(x,y) = cos(r_x, r_y)$
• Pearson correlation coefficient
 $- S_{xy} = items rated by both users x and y$
 $sim(x, y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})(r_{ys} - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})^2 (r_{ys} - \bar{r_y})^2}}$

Rating predictions

- Let D be the set of k users most similar to u who have rated item i
- Possibilities for prediction function (item i):

$$-\mathbf{r}_{ui} = \mathbf{K} \sum_{d \in D} \mathbf{r}_{di}$$

$$-r_{ui} = K \sum_{d \in D} sim(u,d) r_{di}$$

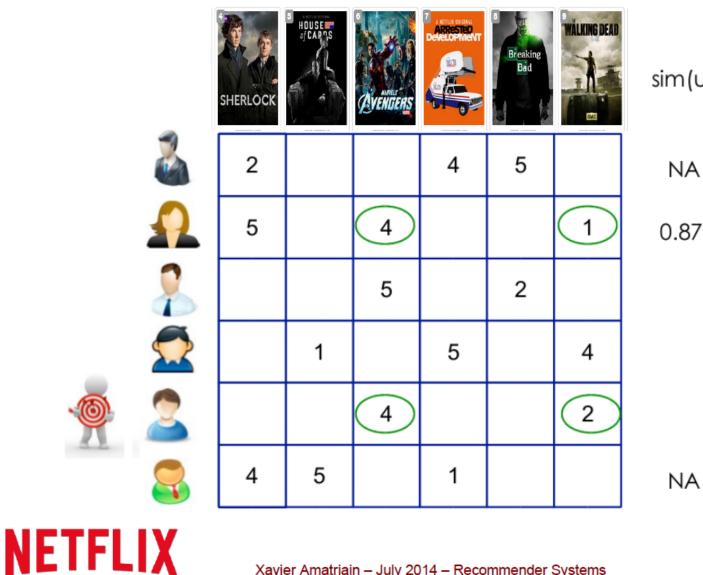
$$-r_{ui} = r_u + K (\sum_{d \in D} sim(u,d) (r_{di} - r_d))$$

-Other options...

NETFLIX

sim(u,v)

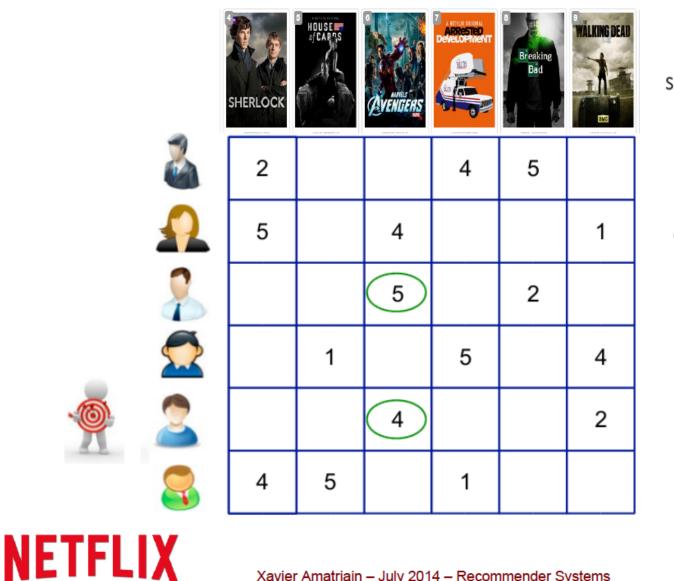
NA



Xavier Amatriain - July 2014 - Recommender Systems

sim(u,v)

0.87



sim(u,v)

0.87

NA

1

NETFLIX



sim(u,v)

NA

0.87

NETFLIX

sim(u,v)

NA

0.87

1

-1

Scalability

- Expensive step is find customers

 worst case O(N |U|
 O(N + |U|)

 Too expensive to d

 Need to pre-compute

 Can use clustering Expensive step is finding k most similar
 - worst case O(N |U|)

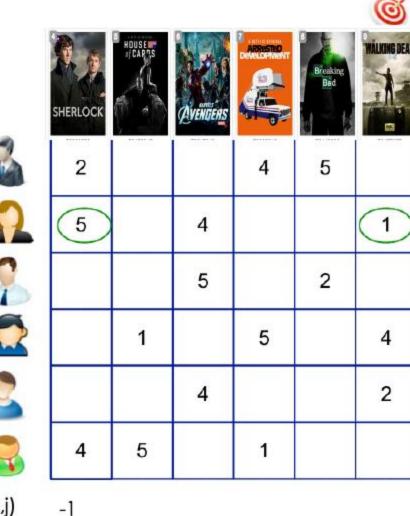
 - Too expensive to do at runtime
 - Need to pre-compute

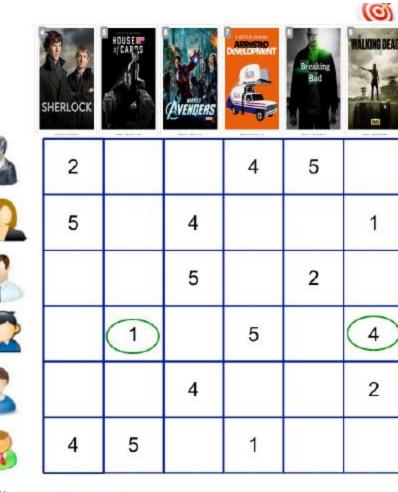
Challenges for user-based CF

- Sparsity evaluation of large item sets,
- Scalability nearest neighbour computation
- Sparsity evaluation of large item sets, users purchase under 1%
 Scalability nearest neighbour computation grows with both users and items
 Poor relationship between likeminded but sparse-rating users
 Solution: reduce dimensional space
 Try item-based CF

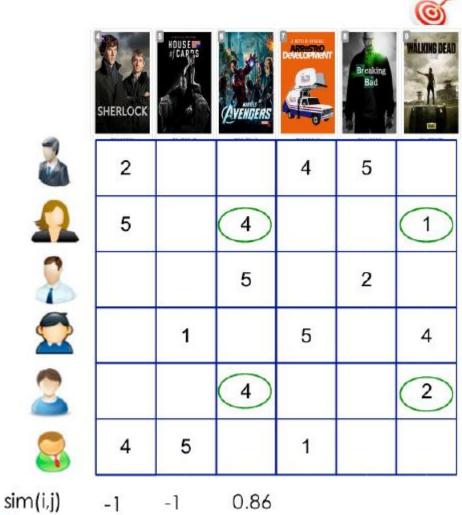
Item-based Collaborative Filtering

- So far: User-based collaborative filtering
- Another view
 - For target item i
 - Compute how similar it is to items rated by target user
 - only based on past ratings from other users !
 - Selet k most similar items
 - Predict rating as weighted average on target user's ratings on most similar items
- Can use same similarity metrics and prediction functions as in user-based model
 - In practice, it has been observed that itembased often works better than user-based



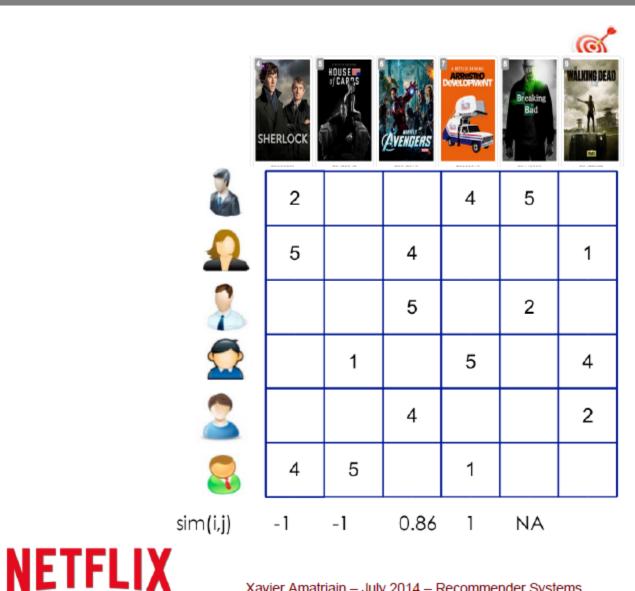


-1 -1



NETFLIX





sim(6,5) cannot be calculated

NETFLIX

						(1)
	SHERLOCK	HOUSE	<u>Aventiens</u>	DARLOPMENT	Breaking Bid	WALKING DEAD
3	2			4	5	2.94*
Ω	5		4			1
2			5		2	2.48*
		1		5		4
2			4			2
8	4	5		1		1.12*
sim(i,j)	-1	-1	0.86	1	NA	

(6)

Pros and cons of collaborative filtering

- Pros
 - No domain knowledge
 - No item features (and no feature selection)
 - Good enough in most cases
- Cons
 - Bootstrap / cold start (new user / new item)
 - Standardized items (and sparsity)
 - dimensionality reduction techniques
 - Assumption: prior behavior determines current
 - Bottleneck of scalability for similarity computation
 - neighbourhood offline

Hybrid Methods

- Implement two separate recommenders and combine predictions
 - Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem

General thoughts / Baseline

- Serendipity
- Personalized vs. non personalized
 - personalized
 - neighbour users are different for each user
 - non-personalized
 - neighbours = all users

Popularity as a baseline

Measures

- Compare predictions with known ratings
 - Mean Average Error

$$\frac{1}{N}\sum_{p,m} |\operatorname{pred}(p,m) - \operatorname{test}(p,m)|$$

Root-mean-square error

$$\sqrt{\frac{\sum_{i=1}^{n} (x_{1,i} - x_{2,i})^2}{n}}$$

Personalized vs. non personalized

Data Set	users	items	total	density	MAE Non Pers	MAE Pers
Jester	48483	100	3519449	0,725	0,220	0,152
MovieLens	6040	3952	1000209	0,041	0,233	0,179
EachMovie	74424	1649	2811718	0,022	0,223	0,151

 $MAE_{NP} = \frac{\sum_{i,j} |v_{ij} - v_j|}{num.ratings}$

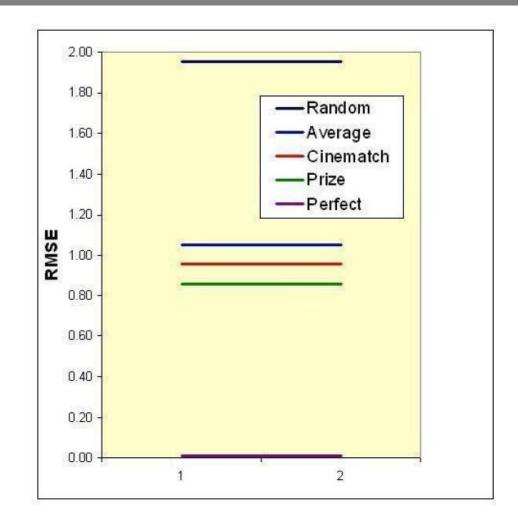
ETFLIX

 v_{ij} is the rating of user i for product j and v_{j} is the average rating for product j

Random / Average / Best

- Recommender systems
- Netflix Prize's first conclusion: it is really extremely simple to produce "reasonable" recommendations and extremely difficult to improve them.

NETFLIX



Problems with Measures

- Narrow focus on accuracy sometimes misses the point
 - Coverage
 - Number of items/users for which system can make predictions
 - Prediction Diversity
 - Prediction Context

Wrapping up

Recommendation: what works

- Collaborative filtering
 - agnostic to domain
 - good performance in general
- Implicit ratings
 - easier to get
 - less noisy
 - Dealing with
 - sparsity: dimensionality reduction
 - matrix factorization, clustering, projection (PCA...)
 - scalability: O(mn) worst case > O(m+n)
 - clustering techniques (K-means)
 - cold-start: hybridize

Stakes

- economique / e-commerce
 - suggest items to buy
 - precision... honesty ? attacks ?
 - confidence in the system, explanations, transparence, control
 - limit user effort?
 - personalized service has a cost for the user
- diversity
 - give access...
 - more information, rare things?
 - only at the price of a nice balance between... precision / novelty / diversity
- privacy
 - to be controlled
 - I say everything for a better service
 - securing, integrating profiles

References

Books

- Recommender systems: an introduction Dietmar Janach (2010)
- Recommender Systems: The Textbook Charu C. Agarwal (2016)
- Recommender systems handbook Francesco Ricci (2015)
- Articles
 - Burke, R. Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction 12, 4 (Nov. 2002), 331-370, 2002.
 - and... Belkin 1992, Goldberg 1992
 - Some slides from
 - Anand Rajaraman and Jeffrey D. Ullman. Course CS 345 on Data Mining, Stanford University, California, Autumn 2006.
 - Xavier Amatriain MLSS'14 tutorial http://technocalifornia.blogspot.fr/2014/08/introduction-to-recommendersystems-4.html

Research communities involved

- user modeling

- user modeling
 machine learning
 (adaptive hypermedia)
 (digital libraries)
 the Semantic Web
 human-computer interaction
 information visualization
 information retrieval
 recommender systems

Academic milestones

- Specialized conferences
 - User Modelling
 - Adaptive Hypermedia
 - UM + AH = UMAP (since 2009)
 - Recommender Systems (RecSys)
 - IR in Context (IRIX)
- Journal
 - User Modeling and User-Adapted Interaction, Éditeur Springer Netherlands