Probabilistic IR

Jean-Pierre Chevallet Philippe Mulhem (with some data from Eric Gaussier)

Team MRIM-LIG

Outline

1. Introduction
2. Binary Independent Model
3. Inference Networks
4. Language Models
5. Conclusion

1. Introduction

- Probabilistic Models : capture the IR problem in a probabilistic framework
- first probabilistic model (Binary Independent Retrieval Model) by Robertson and Spark-Jones in 1976...
- late 90s, emergence of language models, still hot topic in IR
- Overall question: "what is the probability for a document to be relevant to a query?"
- several interpretation of this sentence

1. Introduction

1. Introduction

- Points covered by the lessons
- main probabilistic information retrieval models
- theoretical aspects
- examples

1. Introduction

- Probabilistic Model of IR
- Different approaches of seeing a probabilistic approach for information retrieval
- Classical approach: probability to have the event Relevant knowing one document and one query.
- Inference Networks approach: probability that the query is true after inference from the content of a document.
- Language Models approach: probability that a query is generated from a document.

2. Binary Independant Retrieval Model

- [Robertson \& Spark-Jones 1976]
- computes the relevance of a document from the relevance known a priori from other documents.
- achieved by estimating of each indexing term a the document, and by using the Bayes Theorem and a decision rule.

2. BIR

- R : binary random variable
- $R=r$: relevant; $R=\bar{r}$: non relevant
- $P(R=r \mid d, q)$: probability that R is r for the document and the query considered (noted $\mathrm{P}(\mathrm{r} \mid \mathrm{d}, \mathrm{q})$)
- probability of relevance depends only from document and query
- term weights are binary $\left(\mathrm{d}=(11 \ldots 100 \ldots), \mathrm{w}_{\mathrm{t}}^{\mathrm{d}}=0\right.$ or 1$)$
- Each term t is characterized by a a binary variable w_{t}, indicating the probability that the term occurs. $\mathrm{P}\left(\mathrm{w}_{\mathrm{t}}=1 \mid \mathrm{q}, \mathrm{r}\right)$: probability that t occurs in a relevant document. $\left(\mathrm{P}\left(\mathrm{w}_{\mathrm{t}}=0 \mid \mathrm{q}, \mathrm{r}\right)=1-\mathrm{P}\left(\mathrm{w}_{\mathrm{t}}=1 \mid \mathrm{q}, \mathrm{r}\right)\right)$
- the terms are conditionnaly independant to R

2. BIR

- For a query Q
with

Relevant Documents \cap Non Relevant Documents $=\varnothing$

2. BIR

- Matching function :

- Use of Bayes theorem

2. BIR

Matching function

- Decision: document retrieved if

$$
\frac{P(r \mid d, q)}{P(\bar{r} \mid d, q)}=\frac{P(d \mid r, q) \cdot P(r, q)}{P(d \mid \bar{r}, q) \cdot P(\bar{r}, q)}>1
$$

- IR looks for a ranking, so we eliminate $\mathrm{P}(\mathrm{r}, \mathrm{q}) / \mathrm{P}(\overline{\mathrm{r}}, \mathrm{q})$ for a given query (constant)
- In IR, it is more simple to use logs:

$$
r s v(d)=_{r a n k} \log \left(\frac{P(d \mid r, q)}{P\left(\left.d\right|^{-} r, q\right)}\right)
$$

2. BIR

- Matching function

- Hypothesis of independence between terms (Binary Independance) with weight w for term t in d :

$$
\begin{aligned}
& P(d \mid r, q)=P(d=(10 \ldots 110 \ldots) \mid r, q)=\prod_{w_{t}^{d}=1} P\left(w_{t}^{d}=1 \mid r, q\right) \cdot \prod_{w_{t}^{d}=0} P\left(w_{t}^{d}=0 \mid r, q\right) \\
& P(d \mid \bar{r}, q)=P(d=(10 \ldots 110 \ldots) \mid \bar{r}, q)=\prod_{w_{t}^{d}=1} P\left(w_{t}^{d}=1 \mid \bar{r}, q\right) \cdot \prod_{w_{t}^{d}=0} P\left(w_{t}^{d}=0 \mid \bar{r}, q\right)
\end{aligned}
$$

2. BIR

- Notations $\quad p_{t}=P\left(w_{t}=1 \mid r, q\right) \quad q_{t}=P\left(w_{t}=1 \mid \bar{r}, q\right)$
- Then $\quad P\left(w_{t}=0 \mid r, q\right)=1-p_{t} \quad P\left(w_{t}=0 \mid \bar{r}, q\right)=1-q_{t}$
- So

$$
\begin{gathered}
r s v(d)==_{r a n k} \log \left(\frac{P(d \mid r, q)}{P(d \mid \bar{r}, q)}\right)=\log \left(\frac{\prod_{w_{t}^{d}=1} p_{t} \cdot \prod_{w_{t}^{t}=0} 1-p_{t}}{\prod_{w_{t}^{t}=1} q_{t} \cdot \prod_{w_{t}^{t}=0} 1-q_{t}}\right)=\log \left(\prod_{w_{t}^{d}=1} \frac{p_{t}}{q_{t}} \times \prod_{w_{t}^{d}=0} \frac{1-p_{t}}{1-q_{t}}\right) \\
r s v(d \mid r, q)=r_{r a n k} \log \left(\prod_{w_{t}^{d}=1} \frac{p_{t}}{q_{t}}\right)+\log \left(\prod_{w_{t}^{d}=0} \frac{1-p_{t}}{1-q_{t}}\right)
\end{gathered}
$$

2. BIR

- Hypothesis: $\mathrm{p}_{\mathrm{t}}=\mathrm{q}_{\mathrm{t}}$ for the terms t of the document absent in the query, because no impact on the relevance of D for Q

$$
r s v(d \mid r, q)=_{r a n k} \log \left(\prod_{t \in D \cap Q} \frac{p_{t}}{q_{t}}\right)+\log \left(\prod_{t \in Q D} \frac{1-p_{t}}{1-q_{t}}\right)
$$

2. BIR

$$
\begin{aligned}
& r s v(d \mid r, q)==_{r a n k} \log \left(\prod_{t \in D \cap Q} \frac{p_{t}}{q_{t}}\right)+\log \left(\prod_{t \in Q \backslash D} \frac{1-p_{t}}{1-q_{t}}\right) \\
& \quad=r_{r a n k} \log \left(\prod_{t \in D \cap Q} \frac{p_{t}}{q_{t}}\right)-\log \left(\prod_{t \in D \cap Q} \frac{1-p_{t}}{1-q_{t}}\right)+\log \left(\prod_{t \in Q \backslash D} \frac{1-p_{t}}{1-q_{t}}\right)+\underbrace{\log \left(\prod_{t} \frac{1-p_{t}}{1-q_{t}}\right)}_{t \in D \cap Q} \\
& \quad={ }_{r a n k} \log \left(\prod_{t \in D \cap Q} \frac{p_{t}}{q_{t}}\right)+\log \left(\prod_{t \in D \cap Q} \frac{1-q_{t}}{1-p_{t}}\right)+\log \left(\prod_{t \in Q \backslash D} \frac{1-p_{t}}{1-q_{t}}\right)+\log \left(\prod_{t \in D \cap Q} \frac{1-p_{t}}{1-q_{t}}\right) \\
& \quad=\log \left(\prod_{t \in D \cap Q} \frac{p_{t}\left(1-q_{t}\right)}{q_{t}\left(1-p_{t}\right)}\right)-\log \left(\prod_{t \in Q} \frac{1-p_{t}}{1-q_{t}}\right) \\
& \quad=\log \left(\prod_{t \in D \cap Q} \frac{p_{t}\left(1-q_{t}\right)}{q_{t}\left(1-p_{t}\right)}\right)
\end{aligned}
$$

because $\log \left(\prod_{i, \in} \frac{1-p_{i}}{1-q_{i}}\right)$ is a constant for a given query Q .

2. BIR

- Finaly !
- Now : how to estimate p_{t} and q_{t} ?

2. BIR

- Use a set of resolved queries
- (queries for which we know the answers on the corpus)

	Relevant	Non Relevant	Total
term t present	r_{t}	$n_{t}-r_{t}$	n_{t}
term tabsent	$R_{t}-r_{t}$	$N-n_{t}-\left(R_{t}-r_{t}\right)$	$N-n_{t}$
Total	R_{t}	$N-R_{t}$	N

- With
- R_{t} : number of relevant documents for a query that contains the term t
- N : number of documents in the corpus
- $r_{t}:$ number of relevant documents containing the term t
- $n_{t}-r_{t}$: number of non relevant documents containing the term t

2. BIR

- Estimation of p_{i} and q_{i} on a set of resolved queries

	Relevant	Non Relevant	Total
term t present	r_{t}	$\mathrm{n}_{\mathrm{t}}-\mathrm{r}_{\mathrm{t}}$	n_{t}
term t absent	$\mathrm{R}_{\mathrm{t}}-\mathrm{r}_{\mathrm{t}}$	$\mathrm{N}-\mathrm{n}_{\mathrm{t}}-\left(\mathrm{R}_{\mathrm{t}}-\mathrm{r}_{\mathrm{t}}\right)$	$\mathrm{N}-\mathrm{n}_{\mathrm{t}}$
Total	R_{t}	$\mathrm{N}-\mathrm{R}_{\mathrm{t}}$	N

$$
\begin{aligned}
p_{t}=\frac{r_{t}}{R_{t}} & 1-p_{t}=\frac{R_{t}-r_{t}}{R_{t}} \\
q_{t}=\frac{n_{t}-r_{t}}{N-R_{t}} & 1-q_{t}=\frac{N-R_{t}-n_{t}+r_{t}}{N-R_{t}}
\end{aligned}
$$

2. BIR

- Global formula

$$
r s v(D)==_{r a n k} \sum_{t \in D \cap Q} \log \left(\frac{\frac{r_{t} / R_{t}}{\left(R_{t}-r_{t}\right) / R_{t}}}{\frac{\left(n_{t}-r_{t}\right) /\left(N-R_{t}\right)}{\left(N-R_{t}-n_{t}+r_{t}\right) /\left(N-R_{t}\right)}}\right)=\sum_{t \in \mathcal{D} \cap Q} \log \left(\frac{\frac{r_{t}}{R_{t}-r_{t}}}{\frac{n_{t}-r_{t}}{N-R_{t}-n_{t}+r_{t}}}\right)
$$

- to avoid problems with 0 s :

$$
r s v(D)==_{\text {rank }} \sum_{t \in D N Q} \log \left(\frac{\frac{r_{t}+0.5}{R_{t}-r_{t}+0.5}}{\frac{n_{t}-r_{t}+0.5}{N-R_{t}-n_{t}+r_{t}+0.5}}\right)
$$

2. BIR

- Problem of initial probabilities
- Basic model binary and independent

2. BIR

- Extension to weighted terms
- Best Match [Robertson 1994] : BM25

$$
r s_{B M 25}(d \mid r, q)==_{\text {rank }} \sum_{l=\pi q q} \log \left(\frac{N-n_{t}+0.5}{n_{t}+0.5}\right) \cdot \frac{\left(k_{1}+1\right) w_{t}^{d}}{\left.k_{1}+(1-b)+b \cdot \frac{d l}{a v d l}\right)+w_{t}^{d}} \cdot \frac{\left(k_{3}+1\right) \cdot w_{t}^{q}}{k_{3}+\left(1-b+w_{t}^{t}\right.}
$$

$$
k_{1}\left((1-b)+b \cdot \frac{d l}{a v d l}\right)+w_{t}^{d} \quad d l=a v d l, b=1
$$

common values :
k_{1} in $[1,2]$
$\mathrm{b}=0.75$
k_{3} in $[0,1000]$
State of the art results

3. Inference Networks IR Models

- [Turtle \& Croft 1996]
- Inspired from Bayesian Belief Networks in Artificial Intelligence
- Idea: Compute the probability to obtain a query using documents $P($ Doc \rightarrow Query $)$: combination of evidences
- Inference Network
- Nodes: random variables
- Links: dependencies
- Direct Acyclic Graph

3. Inference Networks IR Models

Example:
Uncertain inference

$$
X=\text { true } \equiv x \quad X=\text { fals } e \equiv \bar{x}
$$

$P(d)=P(d / b, c) \cdot P(b) \cdot P(c)+P(d / \bar{b}, c) \cdot P(\bar{b}) \cdot P(c)$ $+P(d / b, \bar{c}) \cdot P(b) \cdot P(\bar{c})+P(d / \bar{b}, \bar{c}) \cdot P(\bar{b}) \cdot P(\bar{c})$
$P(b)=P(b / a) \cdot P(a)+P(b / \bar{a}) \cdot p(\bar{a}) \quad P(\bar{b})=P(\bar{b} / a) \cdot p(a)+P(\bar{b} / \bar{a}) \cdot p(\bar{a})$

3. Inference Networks IR Models

- In IR:
- Binary nodes
- Example
- Inference

$$
\begin{aligned}
& \operatorname{prob}(d \rightarrow q)=\operatorname{prob}(q) \\
& =\operatorname{prob}\left(q / q_{1}, q_{2}\right) \cdot p\left(q_{1}\right) \cdot p\left(q_{2}\right)+\operatorname{prob}\left(q / \overline{q_{1}}, q_{2}\right) \cdot p\left(\overline{q_{1}}\right) \cdot p\left(q_{2}\right) \\
& \quad+\operatorname{prob}\left(q / q_{1}, \overline{q_{2}}\right) \cdot p\left(q_{1}\right) \cdot p\left(\overline{q_{2}}\right)+\operatorname{prob}\left(q / \overline{q_{1}}, q_{2}\right) \cdot p\left(\overline{q_{1}}\right) \cdot p\left(\overline{q_{2}}\right)
\end{aligned}
$$

3. Inference Networks IR Models

- Use in IR
- Example:
$-\mathrm{P}(\mathrm{D})=1 / \mid$ Corpus \mid
$-\mathrm{P}\left(\mathrm{t}_{\mathrm{i}} / \mathrm{D}\right)=\mathrm{tf}_{\mathrm{i}, \mathrm{D}} . \mathrm{idf}_{\mathrm{i}} \quad$ if node from D , and $\mathrm{p}\left(\mathrm{t}_{\mathrm{i}}\right)=0$ othewise
$-P\left(q_{j} / t_{i}\right)=1 \quad$ if link, and $p\left(q_{i}\right)=0$ othewise
- Operators for the Q_{i} with \#and, \#or, ...
$-\mathrm{P}\left(\mathrm{Q} / \mathrm{Q}_{\mathrm{k}}\right)=1$

3. Inference Networks IR Models

- More a framework for IR than a theoretical model.
- Problem of initial probabilities not solved (in fact tf.idf...)
- System: Inquery

4. Language Models of IR

- Consider two dices d 1 and d 2 so that :
$\begin{array}{lcc}- \text { for d1 } & P(1)=P(3)=P(5)=\frac{1}{3}-\varepsilon & P(2)=P(4)=P(6)=\varepsilon \\ - \text { for d2 } & P(1)=P(3)=P(5)=\varepsilon & P(2)=P(4)=P(6)=\frac{1}{3}-\varepsilon\end{array}$
- Suppose that we observe the sequence $\mathrm{Q}=\{1,3,3,2\}$.
- What dice is likely to have generated this sequence?

4. Language Models of IR

$P(Q \mid d 1)=\left(\frac{1}{3}-\varepsilon\right)^{3} \cdot \varepsilon$
if $\varepsilon=0.01$
$P(Q \mid d 1)=3.38 E-4$
$P(Q \mid d 2)=\left(\frac{1}{3}-\varepsilon\right) \cdot \varepsilon^{3}$
$P(Q \mid d 2)=2.99 E-6$

4. Language Models of IR

- In IR
- the documents are the dices, we will represent documents as "documents models"
- the query is the sequence

4. Language Models of IR

- Comes from speech understanding theory
- Idea : Use of statistical techniques to estimate both document models and the matching score of document for a query
- Document model?
- A document is a « bag of terms »
- A language model of a document is a probability function of its terms. The terms being part of the indexing vocabulary.

4. Language Models of IR

- Models

- Probability P of occurrence of a word or a word sequence in one language
- Consider a sequence s composed of words : $m_{1}, m_{2}, \ldots, m_{1}$.
- The probability $\mathrm{P}(\mathrm{s})$ may be computed by

$$
P(s)=\prod_{i=1}^{l} P\left(m_{i} \mid m_{1} \ldots m_{i-1} m_{1} \ldots m_{i-1}\right)
$$

- For complexity reasons, we simplify by considering only the $\mathrm{n}-1$ preceding words of a word (namely a ngram model)

$$
P\left(m_{i} \mid m_{1} \ldots m_{i-1}\right)=P\left(m_{i} \mid m_{i-n+1} \ldots m_{i-1}\right)
$$

4. Language Models of IR

- Models
- Unigram $\quad P(s)=\prod_{i=1}^{1} P\left(m_{i}\right)$
- Bigram

$$
P(s)=\prod_{i=1}^{l} P\left(m_{i} \mid m_{i-1}\right)=\prod_{i=1}^{l} \frac{P\left(m_{i-1} m_{i}\right)}{P\left(m_{i-1}\right)}
$$

- Trigram $P(s)=\prod_{i=1}^{l} P\left(m_{i} \mid m_{i-2} m_{i-1}\right)=\prod_{i=1}^{l} \frac{P\left(m_{i-2} m_{i-1} m_{i}\right)}{P\left(m_{i-2} m_{i-1}\right)}$
- In IR, most approaches use unigrams

4. Language Models of IR

- Basic idea :

$$
P(R=r \mid d, q)=P\left(q \mid \theta_{d}, R=r\right) \quad \text { noted } \quad P\left(q \mid \theta_{d}\right)
$$

meaning : what is the probability that a user who likes the document d should use the query q (to retrieve d)?
\ldots but \ldots how to estimate θ_{d} ?

4. Language Models of IR

- Several probability laws may be used for θ_{d}
- Multinomial distribution
- example : one urn with several marbles of n colors, several marbles of each color may appear. A sequence of colors selected (marble selected an put back) is modelled by a multinomial law of probability:

$$
\mathrm{p}(\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 2)=\mathrm{p}(\mathrm{c} 1)^{*} \mathrm{p}(\mathrm{c} 2) * \mathrm{p}(\mathrm{c} 2)
$$

- we have

$$
\sum_{c} p(c)=1
$$

- Multinomial distribution for documents [Song and Fei]:
- here we compute the probability that the query terms get selected from the document
- each word occurrence is independant
- with V the vocabulary: $\sum_{t \in V} p\left(t \mid \theta_{d}\right)=1$
$P\left(q \mid \theta_{d}\right)=\frac{|q|!}{\prod_{t \in V}\left(\left|w_{t}^{q}\right|!\right)} \prod_{t \in V} p\left(t \mid \theta_{d}\right)^{w_{t}^{q}} \propto \prod_{t \in V} p\left(t \mid \theta_{d}\right)^{w_{t}^{q}}$

4. Language Models of IR

- Several probability laws may be used for θ_{d}
- Multiple Bernoulli
- define a binary random variable X_{t} for each term t that indicates whether the term is present $\left(X_{t}=1\right)$ or absent $\left(X_{t}=0\right)$ in the query.
- each word is considered independant
- we have for each t: $p\left(X_{t}=1 \mid \theta_{d}\right)+p\left(X_{t}=0 \mid \theta_{d}\right)=1$
- the parameters are: $\theta_{d}=\left\{p\left(X_{t}=1 \mid \theta_{d}\right)\right\}_{t \in V}$

$$
p\left(q \mid \theta_{d}\right)=\prod_{t \in q} P\left(X_{t}=1 \mid \theta_{d}\right) \cdot \prod_{\mathbb{l} \neq \mathcal{q}}\left(1-P\left(X_{t}=1 \mid \theta_{d}\right)\right)
$$

4. Language Models of IR

- We focus here on the Multinomial model (good results and more used in litterature)
- How to estimate the parameters of the model?
- A simple solution: use the Maximum Likelihood estimate (MLE) to fit the statistical model to the data: We look for the $p\left(t \mid \theta_{\mathrm{d}}\right)$ that maximize the probability to observe the document.

$$
\begin{aligned}
& \qquad P_{M L}\left(t \mid \theta_{d}\right)=\frac{w_{d}^{t}}{\sum_{t \in V} w_{d}^{t}}=\frac{w_{d}^{t}}{|d|} \quad \text { with } \mathrm{w}_{\mathrm{d}}^{\mathrm{t}} \text { the count of } \mathrm{t} \text { in d } \\
& \text { respects the "multinomial constraint" : } \sum_{t \in U} P_{M L}\left(t \mid \theta_{d}\right)=\frac{\sum_{t \in C_{d}} w_{d}^{t}}{|d|}=\frac{|d|}{|d|}=1
\end{aligned}
$$

4. Language Models of IR

- Is it done, so? Not really... consider
- a vocabulary V=\{"day", "night", "sky"\}
- a document d so that $\theta_{d}=\left\{p_{M L}\left(\right.\right.$ day $\left.\mid \theta_{d}\right)=0.67, p_{M L}$ (night \mid $\left.\theta_{d}\right)=0.33, \mathrm{p}_{\mathrm{ML}}\left(\right.$ sky $\left.\left.\mid \theta_{\mathrm{d}}\right)=0\right\}$
- a query q="day sky"
- then: $\mathrm{p}\left(\mathrm{q} \mid \theta_{\mathrm{d}}\right) \propto \mathrm{p}_{\mathrm{ML}}\left(\text { day } \mid \theta_{\mathrm{d}}\right)^{1 *} \mathrm{p}_{\mathrm{ML}}\left(\operatorname{sky} \mid \theta_{\mathrm{d}}\right)^{1}$

$$
\begin{aligned}
& =0.67 * 0 \\
& =0 \quad \ldots!
\end{aligned}
$$

even is the document matches partially the query!

4. Language Models of IR

- This problems comes from the fact that we used only the document source to model the probability distribution, and the document is not large enough to really contain all the needed data...
- $\mathrm{So}, \mathrm{P}_{\mathrm{ML}}$ is itself not sufficient for the language model of documents.
- One solution is to integrate data from a larger set, the collection of documents.

4. Language Models of IR

- The solution is to achieve probability smoothing - we smooth the p_{ML} by a probability coming from the corpus
- mainly the probability coming from the corpus is defined as

$$
P(t \mid C)=\frac{\sum_{\in \in C} w_{d}^{t}}{\sum_{d \in C} \sum_{t \in l} w_{d}^{t}}=\frac{\sum_{d \in C} w_{d}^{t}}{\sum_{d \in C}|d|}
$$

- Several smoothings exist (with different impact on retrieval quality), corresponding to several ways to manage the integration between the data from thre documents and the corpus

4. Language Models of IR

- Jelinek-Mercer smoothing
- fixed coefficient interpolation

$$
P_{\lambda}\left(t \mid \hat{\theta}_{d}\right)=(1-\lambda) \cdot P_{M L}\left(t \mid \theta_{d}\right)+\lambda \cdot P(t \mid C)
$$

- one λ in $[0,1]$ for all the documents
- when $\lambda=0$, we get P_{ML}, when $\lambda=1$ all document models are the same as the collection model.
- Estimation with several values λ on one test collection.
- simple to compute, good results.

4. Language Models of IR

- Jelinek smoothing guaranties the contraint related to multinomial distribution $\sum_{\mathbb{E E} P_{\lambda}} p_{\lambda}\left(\mid \hat{\theta}_{d}\right)=1 \quad$?
- We have $p_{\lambda}\left(t \mid \hat{\theta}_{d}\right)=(1-\lambda) \frac{w_{d}^{t}}{\sum_{d=1} w_{d}^{t}+\lambda \frac{\sum_{t \in c} w_{d}^{t}}{\sum_{d \in c} \sum_{d=1} w_{d}^{t}} \text {. }}$
- So

$$
\begin{aligned}
\sum_{r \in V} p \lambda\left(t \mid \hat{\theta}_{d}\right) & =(1-\lambda) \frac{\sum_{t \in w_{d}} w_{d}^{t}}{\sum_{r \in V} w_{d}^{t}}+\lambda \frac{\sum_{d \in \mathcal{C}} \sum_{d \in C} w_{d}^{t}}{\sum_{d \in C} \sum_{t \in V} w_{d}^{t}} \\
& =(1-\lambda)+\lambda \\
& =1
\end{aligned}
$$

4. Language Models of IR

- Dirichlet smoothing
- interpolation dependant of each document, with one parameter μ
- considers that the corpus adds pseudo occurrences of terms (non integer) :

$$
P_{\mu}\left(t \mid \hat{\theta}_{d}\right)=\frac{w_{d}^{t}+\mu P(t \mid C)}{|d|+\mu}
$$

4. Language Models of IR

- Dirichlet smoothing
- do we still get multinomial distributions?

$$
\begin{aligned}
& P_{\mu}\left(t \mid \hat{\theta}_{d}\right)=\frac{w_{d}^{t}+\mu P(t \mid C)}{\sum_{d=1} w_{d}^{t}+\mu} \\
& \sum_{t \in \in} P_{\mu}\left(t \mid \hat{\theta}_{d}\right)=\frac{1}{\sum_{t \in \in} w_{d}^{t}+\mu} \cdot \sum_{t \in e_{d}}\left(w_{d}^{t}+\mu P(t \mid C)\right) \\
& =\frac{1}{\sum_{i \in} w_{d}^{t}+\mu} \cdot\left(\sum_{i \in} w_{d}^{t}+\mu \sum_{t \in T} P(t \mid C)\right) \\
& =\frac{1}{\sum_{i \in w_{d}} w_{d}^{t}+\mu} \cdot\left(\sum_{t=1} w_{d}^{t}+\mu\right)=1
\end{aligned}
$$

- Yes:

4. Language Models of IR

- Dirichlet smoothing
- relationship with Jelinek-Mercer smoothing

$$
\begin{aligned}
& P_{\mu}\left(t \mid \hat{\theta}_{d}\right)=\frac{w_{d}^{t}+\mu P(t \mid C)}{|d|+\mu}=\frac{|d|}{|d|+\mu} \cdot \frac{w_{d}^{t}}{|d|}+\frac{\mu}{|d|+\mu} P(t \mid C) \\
&=\frac{|d|}{|d|+\mu} \cdot P_{M L}\left(t \mid \theta_{d}\right)+\frac{\mu}{|d|+\mu} P(t \mid C) \\
& \approx \lambda
\end{aligned}
$$

- long documents have less smoothing (because more data)
- Dirichlet smoothing: very good results (values around 1000 or greater).

4. Language Models of IR

- Why smoothing is important?
- In fact, smoothing makes a link with IDF [Lafferty \& Zhai 2001]
- consider that a general smoothing is of the form

$$
P_{\mu}\left(t \mid \hat{\theta}_{d}\right)=\left\{\begin{array}{cl}
p_{s}\left(t \mid \theta_{d}\right) & \text { if } \mathrm{t} \text { in document } \mathrm{d} \\
\alpha_{\mathrm{d}} \mathrm{p}(\mathrm{t} \mid \mathrm{C}) & \text { otherwise }
\end{array}\right.
$$

method	$\mathrm{P}_{\mathrm{s}}\left(\mathrm{w} \mid \theta_{\mathrm{d}}\right)$	α_{d}	Parameter
Jelinek- Mercer	$(1-\lambda) \cdot P_{M L}\left(t \mid \theta_{d}\right)+\lambda . P(t \mid C)$	λ	λ
Dirichlet	$\frac{w_{d}^{t}+\mu P(t \mid C)}{\sum_{t \in 1}^{w_{d}^{t}+\mu}}$	$\frac{\mu}{\sum_{d=1}^{w_{d}^{t}+\mu}}$	μ

4. Language Models of IR

- Why smoothing is important?

$$
\begin{aligned}
& \log P\left(q \mid \hat{\theta}_{d}\right)=_{\text {rank }} \sum_{t \in Y} w_{t}^{q} \cdot \log p\left(t \mid \hat{\theta}_{d}\right) \\
& ={ }_{r a n k} \sum_{i \in d} w_{t}^{q} \cdot \log p_{s}\left(t \mid \theta_{d}\right)+\sum_{t \notin d} w_{t}^{q} \cdot \log \alpha_{d} p(t \mid C) \\
& =_{r a n k} \sum_{t \in d} w_{t}^{q} \cdot \log p_{s}\left(t \mid \theta_{d}\right)+\sum_{t \in T} w_{t}^{q} \cdot \log \alpha_{d} p(t \mid C)-\sum_{t \in d} w_{t}^{q} \cdot \log \alpha_{d} p(t \mid C) \\
& ={ }_{r a n k} \sum_{t \in d} w_{t}^{q} \cdot \log \frac{p_{s}\left(t \mid \theta_{d}\right)}{\alpha_{d} p(t \mid C)}+\sum_{t \in V} w_{t}^{q} \cdot \log \alpha_{d}+\sum_{l,} w^{q} \cdot \log p(t \mid C) \\
& \text { "similar" to TF.IDF }
\end{aligned}
$$

4. Language Models of IR

- Generalization of the original matching function, negative Kullback-Leibler divergence:

$$
-K L\left(\theta_{q} \mid \hat{\theta}_{d}\right)=-\sum_{\theta_{\theta}} P\left(\left(\mid \theta_{q}\right) \log \frac{P\left(t \mid \theta_{q}\right)}{P\left(t \hat{\theta}_{d}\right)}\right.
$$

- KL divergence compares two probabilities distributions (relative entropy: how to code one distribution with another one)

4. Language Models of IR

- KL divergence on multinomial distributions of query and document and MLE similar to original matching:

$$
\begin{aligned}
& -K L\left(\theta_{q} \mid \hat{\theta}_{d}\right)=-\sum_{t=\theta} P\left(t \mid \theta_{q}\right) \log \frac{P\left(t \mid \theta_{q}\right)}{P\left(t \mid \hat{\theta}_{d}\right)} \\
& =-\sum_{i=1} \frac{w_{z}^{q}}{|q|} \log P\left(\left.t\right|_{q}\right)+\sum_{q=} \frac{w_{L}^{q}}{|q|} \log P\left(t \mid \hat{\theta}_{d}\right) \\
& ==_{\text {rank }} \sum_{k=1} w_{t}^{4} \log P\left(t \mid \hat{\theta}_{d}\right) \\
& ={ }_{r a n k} \log \prod_{t \in} P\left(t \hat{\theta}_{d}\right)^{m p} \\
& =_{\text {rank }} P\left(q \mid \hat{\theta}_{d}\right)
\end{aligned}
$$

4. Language Models of IR

- The KL divergence considers by definition comparison of distributions, which seems closer to the usual meaning of matching in IR.
- KL is implemented as Language Model matching in Terrier and Lemur.

5. Conclusion

- Language models are state of the art IR
- Multinomial
- Dirichlet smoothing
- Strong fundamentals, links to heuristics in IR (TF, IDF)
- Many extentions
- cluster-based smoothing
- other probability models (Poisson)
- other smoothings
- LM state of the art, competing with BM 25.

Bibliography

- C. Zhai, Statistical Language Models for Information Retrieval, Morgan\&Claypool, 2009
- Zhai\&Lafferty, A Study of Smoothing Methods for Language Models Appplied to Ad Hoc Information Retrieval, ACM SIGIR 2001, pp334-342
- F. Song and W.B. Croft. A general language model for information retrieval. In Proceedings of Eighth International Conference on Information and Knowledge Management (CIKM'99), 1999.
- H. Turtle , W. B. Croft, Inference networks for document retrieval, Proceedings of the 13th annual international ACM SIGIR, p.1-24, September 05-07, 1990.
- J. Ponte and W.B. Croft, A Language Modeling Approach to Information Retrieval, ACM SIGIR 1998.

Bibliography

- S. Robertson and K. Spark Jones (1976), Relevance weighting of search terms. Journal of the American Society for Information Science. ${ }^{\circ} 27$. pp. 129-146.
- S. Robertson et al., Okapi at TREC-3, TREC-3 conference, 1994.
- A. Singhal, Modern Information Retrieval: A Brief Overview, Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2001.
- M. Boughanem, W. Kraaj an J.Y. Nie, Modèles de langue pour la recherche d'information, in les systèmes de recherche d'information : modèles conceptuels, Hermes 2004.
- Use in IR - Model of Hiemstra
- Idea: $\operatorname{Score}(D, Q)=P(D / Q)=P\left(D / t_{1} t_{2} \ldots t_{n}\right) \quad$ with $\mathrm{Q}=\mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}}$

$$
=P(D) \frac{P\left(t_{1} t_{2} \ldots t_{n} / D\right)}{P\left(t_{1} t_{2} \ldots t_{n}\right)}
$$

- Hypotheses :
- Independent query terms
- Notation : $\mathrm{P}\left(\mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}}\right)=1 / \mathrm{c}$

$$
\begin{aligned}
& P(D)=\frac{|D|}{|C|}: \text { Probability of the document } \\
& P\left(t_{i} / D\right)=\alpha_{1} \cdot P_{M L}\left(t_{i} / D\right)+\left(1-\alpha_{1}\right) \cdot P_{M L}\left(t_{i} / C\right)
\end{aligned}
$$

: Probability of a term knowing a document

- Use in IR - Model of Hiemstra
- Expansion of $\mathrm{P}\left(\mathrm{t}_{\mathrm{i}} / \mathrm{D}\right)$
- So

$$
\begin{aligned}
P\left(t_{i} / D\right) & =\alpha_{1} \cdot \frac{t f\left(t_{i}\right)}{\sum_{t} t f(t)}+\left(1-\alpha_{1}\right) \frac{d f\left(t_{i}\right)}{\sum_{t} d f(t)} \\
& =\left(\alpha_{1} \cdot \frac{t f\left(t_{i}\right)}{\sum_{t} t f(t)} \cdot \frac{\sum_{t} d f(t)}{\left(1-\alpha_{1}\right) \cdot d f\left(t_{i}\right)}+1\right) \cdot\left(1-\alpha_{1}\right) \frac{d f\left(t_{i}\right)}{\sum_{t} d f(t)}
\end{aligned}
$$

$\operatorname{Score}(D, Q)=c \cdot \frac{|D|}{|C|} \cdot \prod_{t_{i} \in Q}\left(\left(\alpha_{1} \cdot \frac{t f\left(t_{i}\right)}{\sum_{t} t f(t)} \cdot \frac{\sum_{t} d f(t)}{\left(1-\alpha_{1}\right) \cdot d f\left(t_{i}\right)}+1\right) \cdot\left(1-\alpha_{1}\right) \frac{d f\left(t_{i}\right)}{\sum_{t} d f(t)}\right)$

- Use in IR - Model of Hiemstra

- We use logs

$$
\begin{aligned}
\operatorname{Score}(D, Q) & =c \cdot \frac{|D|}{|C|} \cdot \prod_{t_{i} \in Q}\left(\left(\alpha_{1} \cdot \frac{t f\left(t_{i}\right)}{\sum_{t} t f(t)} \cdot \frac{\sum_{t} d f(t)}{\left(1-\alpha_{1}\right) \cdot d f\left(t_{i}\right)}+1\right) \cdot\left(1-\alpha_{1}\right) \frac{d f\left(t_{i}\right)}{\sum_{t} d f(t)}\right) \\
\log -\operatorname{Score}(D, Q) & =\log \left(c \cdot \frac{|D|}{|C|} \cdot \prod_{t_{i} \in \in}\left(\left(\alpha_{1} \cdot \frac{t f\left(t_{i}\right)}{\sum_{t} t f(t)} \cdot \frac{\sum_{t} d f(t)}{\left(1-\alpha_{1}\right) \cdot d f\left(t_{i}\right)}+1\right) \cdot\left(1-\alpha_{1}\right) \frac{d f\left(t_{i}\right)}{\sum_{t} d f(t)}\right)\right)
\end{aligned}
$$

- Constants elements for one query

$$
\begin{gathered}
\log -\operatorname{Score}(D, Q)=\log (c)+\log \left(\frac{|D|}{|C|}\right)+\sum \log \left(\alpha_{1} \cdot \frac{t f\left(t_{i}\right)}{\sum_{t} t f(t)} \cdot \frac{\sum_{t} d f(t)}{\left(1-\alpha_{1}\right) \cdot d f\left(t_{i}\right)}+1\right)+\sum_{t_{i} \in \mathcal{Q}} \log \left(\left(1-\alpha_{1}\right) \frac{d f\left(t_{i}\right)}{\sum_{t} d f(t)}\right) \\
- \text { So } \quad \log (c), \quad \log \left(\frac{|D|}{|C|}\right), \quad \text { and } \sum_{t_{i} \in Q} \log \left((1-\alpha) \frac{d f\left(t_{i}\right)}{\sum_{i} d f(t)}\right.
\end{gathered}
$$

$$
\begin{aligned}
& \log (c), \quad \log \left(\frac{|D|}{|C|}\right), \quad \text { and } \sum_{t_{i} \in Q} \log \left((1-\alpha) \frac{d f\left(t_{i}\right)}{\sum_{i} d f(t)}\right. \\
& \log -\operatorname{Score}(D, Q) \propto \sum_{t_{i} \in Q} \log \left(\alpha_{1} \cdot \frac{t f\left(t_{i}\right)}{\sum_{t} t f(t)} \cdot \frac{\sum_{t} d f(t)}{\left(1-\alpha_{1}\right) \cdot d f\left(t_{i}\right)}+1\right)
\end{aligned}
$$

- Use in IR - Model of Hiemstra
- Typical value for $\alpha_{1}: 0.15$
- Defines a strong formal framework for IR
- Comparable results than the vector space model but possible extensions (example : good results on web pages)

