Multimedia Indexing and Retrieval

Deep Learning for multimedia indexing and retrieval

Georges Quénot

Multimedia Information Modeling and Retrieval Group

Georges Quénot

M2-MOSIG-IAR

Outline

- Machine learning
- Loss function
- Formal neuron
- Single layer perceptron
- Multilayer perceptron
- Back-propagation
- Learning rate
- Mini-batches
- Convolutional layers
- Pooling
- Softmax

Supervised learning

• Target function: $f: X \to Y$

 $x \to y = f(x)$

- x : input object (typically vector)
- y: desired output (continuous value or class label)
- -X: set of valid input objects
- Y: set of possible output values
- Training data: $S = (x_i, y_i)_{(1 \le i \le I)}$
 - I: number of training samples
- Learning algorithm: $L: (X \times Y)^* \to Y^X$ $S \to f = L(S)$
- Regression or classification system: y = f(x) = [L(S)](x) = g(S,x)

$$((X \times Y)^* = \bigcup_{n \in N} (X \times Y)^n)$$

Georges Quénot

Single-label loss function

- Quantifies the cost of classification error or the empirical risk
- Example: $E_S(f) = \sum_{i=1}^{i=1} (f(x_i) y_i)^2$
- The learning algorithm aims at minimizing the empirical risk
- If f depends on a parameter vector θ (e.g. $\theta = (w, b)$ for a linear SVM): $\theta^* = \underset{\theta}{\operatorname{argmax}} E_S(f_{\theta})$

Multi-label loss function

- Predict *P* labels for each data sample *x*
- *P* decision functions: $f = (f_p)_{(1 \le p \le P)}$
- Example: $L_S(f) = \sum_{i=1}^{i=I} \sum_{p=1}^{p=P} (f_p(x_i) y_{ip})^2$

•
$$\theta^* = \underset{\Theta}{\operatorname{argmax}} E_S(f_{\Theta})$$

• The f_p functions may take any real value

Formal neural or unit

$$y = \sum_{j} w_{j} x_{j}$$
linear combination

$$z = \frac{1}{1 + e^{y}}$$

Georges Quénot

M2-MOSIG-IAR

Neural layer (all to all)

$$y_i = \sum_j w_{ij} x_j$$

$$z_i = \frac{1}{1 + e^{y_i}}$$

matrix-vector multiplication

per component operation

Georges Quénot

M2-MOSIG-IAR

Multilayer perceptron (all to all)

Georges Quénot

M2-MOSIG-IAR

Feed forward

- Global network definition: O = F(W, I) $(I \equiv x \quad O \equiv y \quad F \equiv f \text{ relative to previous notations})$
- Layer values: $(X_0, X_1 \dots X_N)$ with $X_0 = I$ and $X_N = O$ (X_n are vectors)
- Vector of all unit parameters:
 W = (W₁, W₂ ... W_N)
 (weights by layer concatenated, W_n are matrices)
- Feed forward: $X_{n+1} = F_{n+1}(W_{n+1}, X_n)$

Error back-propagation

- Training set: $(I_p, O_p)_{(1 \le p \le P)}$ input-output samples
- $X_{p,0} = I_{p,0}$ and $X_{p,n+1} = F_{n+1}(W_{n+1}, X_{p,n})$
- Note: regarding this notation the vector-matrix multiplication counts as one layer and the element-wise non-linearity counts as another one (not mandatory but greatly simplifies the layer modules' implementation)
- Error (empirical risk) on the training set: $E(W) = \sum_{p} (F(W, I_{p}) - O_{p})^{2} = \sum_{p} (X_{p,N} - O_{p})^{2}$
- Minimization of E(W) by gradient descent

Error back-propagation

- Minimization of E(W) by gradient descent:
 - Randomly initialize W(0)

- Iterate
$$W(t+1) = W(t) - \eta \frac{\partial E}{\partial W}(t)$$
 $\eta = f(t)$ or $\eta = \left(\frac{\partial^2 E}{\partial W^2}(t)\right)^{-1}$

– Back-propagation: $\frac{\partial E}{\partial W_n}$ is computed by backward recurrence from

$$\frac{\partial F_n}{\partial W_n}$$
 and $\frac{\partial F_n}{\partial X_{n-1}}$ applying iteratively $(g \circ f)' = (g' \circ f) \cdot f'$

Georges Quénot

M2-MOSIG-IAR

_1

Error back-propagation (adapted from Yann Le Cun)

Forward pass, for $1 \le n \le N$: $X_n = F_n(W_n, Xn_{-1})$

Partial derivatives with respect to W_n . For $1 \le n \le N$:

∂E	∂E	$\partial F_n(W_n, X_{n-1})$
∂W_n	$\overline{\partial X_n}$	∂W_n

We need partial derivatives with respect to X_n . For N :

 $\frac{\partial E}{\partial X_N} = \frac{\partial C(X_N, O)}{\partial X_N}$

Then backward recurrence:

$$\frac{\partial E}{\partial X_{n-1}} = \frac{\partial E}{\partial X_n} \frac{\partial F_n(W_n, X_{n-1})}{\partial X_{n-1}}$$

Georges Quénot

Layer module (adapted from Yann Le Cun)

Notes: $X_{in} \equiv X_{n-1}$, $X_{out} \equiv X_n$, $W \equiv W_n$ and $F \equiv F_n$

Georges Quénot

M2-MOSIG-IAR

Layer module (adapted from Yann Le Cun)

Georges Quénot

M2-MOSIG-IAR

Linear module (adapted from Yann Le Cun)

Note: X_{in} and X_{out} are regular (column) vectors and W is a matrix while $\partial E / \partial X_{in}$ and $\partial E / \partial X_{out}$ are transpose (row) vectors and $\partial E / \partial W$ is a transpose matrix (for the vectors, this is because $dE = (\partial E / \partial X) \cdot dX$). $\partial E / \partial W$ is the outer product of the regular and transpose vectors X_{in} and $\partial E / \partial X_{out}$.

Georges Quénot

Pointwise module (adapted from Yann Le Cun)

Note: *B* is a bias vector on the input. X_{in} , X_{out} and *B* are regular (column) vectors while $\partial E / \partial X_{in}$ and $\partial E / \partial X_{out}$ and $\partial E / \partial B$ are transpose vectors. *f* is a scalar function applied pointwise on $X_{in} + B$. *f'* is the derivative of *f* and is also applied pointwise. The multiplication by $(f'(X_{in} + B))^T$ is also performed pointwise.

Georges Quénot

Convolutional layers

- Alternative to the "all to all" connections
- Preserves the image topology via "feature maps"
- Each layer is a "stack" of features maps
- Each map points is connected to the map points of a neighborhood in the previous layer
- Weights between maps are shared so that they are invariant by translation
- Resolution changes across layers: stride and pooling
- Example: AlexNet

Convolutional layers

Classical image convolution (2D to 2D):

$$O(i,j) = (I * K)(i,j) = \sum_{(m,n)} I(i-m, j-n)K(m,n)$$

Convolutional layer (3D to 3D):

$$O(i, j, l) = (I * K)(i, j, l) = B(l) + \sum_{k} \sum_{(m, n)} I(i - m, j - n, k) K(m, n, k, l)$$

k and l: indices of the feature maps in the input and output layers

m and *n*: within a window around the current location, corresponding to the feature size

ImageNet Challenge 2012

[Krizhevsky et al., 2012]

- 7 hidden layers, 650K units, 60M parameters (W)
- GPU implementation (50× speed-up over CPU)
- Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Georges Quénot

ImageNet Classification 2012 Results

Krizhevsky et al. -- **16.4% error** (top-5) Next best (non-convnet) – **26.2% error**

Georges Quénot

M2-MOSIG-IAR

ImageNet Classification 2013 Results

http://www.image-net.org/challenges/LSVRC/2013/results.php Demo: http://www.clarifai.com/

Going deeper and deeper

Revolution of Depth 28.2 25.8 152 layers 16.4 11.7 19 layers 22 layers 7.3 \$ 6.7 3.57 shallow 8 layers 8 layers ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10 ResNet GoogleNet VGG AlexNet ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

For comparison, human performance is 5.1% (Russakovsky et al.)

Georges Quénot

M2-MOSIG-IAR

2016-2017

Microsoft

Research

Engineered versus learned descriptors

- Classical "classification pipeline"
 - Extraction(s) [aggregation] optimization(s) classifier(s) – one or more levels of fusion – re-scoring (non exhaustive example)
 - Most of the stages are explicitly engineered: the form of descriptors or processing steps has been thought and designed by a skilled engineer or researcher
 - Lots of experience and acquired expertise by thousands of smart people over tens of years
 - Learning concerns only the classifier(s) stages and a few hyper-parameters controlling the other ones
 - Almost everything has been tried
 - The more you incorporate, the more you get (at a cost)

Engineered versus learned descriptors

- Deep learning pipeline: MLP with about 8 layers
 - Advances in computing power (Tflops): large networks possible
 - Algorithmic advance: combination of convolutional layers for the lower stages with all-to-all layers; the topology of the image is preserved in the lower layers with weights shared between the units within a layer
 - Algorithmic advances: NN researchers finally find out how to have back-propagation working for MLP with more than three layers
 - Image pixels are entered *directly* into the first layer
 - The first (resp. intermediate, last) layers practically compute lowlevel (resp. intermediate level, semantic) descriptors
 - Everything is made using a unique and homogeneous architecture
 - A single network can be used for detecting many target concepts
 - All the level are jointly optimized at once
 - Requires huge amounts of training data