
Georges Quénot M2-MOSIG-IAR 2016-2017 1

Multimedia Indexing and Retrieval

Deep Learning for multimedia indexing and retrieval

Georges Quénot

Multimedia Information Modeling and Retrieval Group

Laboratory of Informatics of Grenoble

Georges Quénot M2-MOSIG-IAR 2016-2017 2

Outline

• Machine learning

• Loss function

• Formal neuron

• Single layer perceptron

• Multilayer perceptron

• Back-propagation

• Learning rate

• Mini-batches

• Convolutional layers

• Pooling

• Softmax

• …

Georges Quénot M2-MOSIG-IAR 2016-2017 3

Supervised learning

• Target function: f : X  Y
x  y = f(x)

– x : input object (typically vector)

– y : desired output (continuous value or class label)

– X : set of valid input objects

– Y : set of possible output values

• Training data: S = (xi,yi)(1  i  I)

– I : number of training samples

• Learning algorithm: L : (X×Y)*  YX

S  f = L(S)

• Regression or classification system: y = f(x) = [L(S)](x) = g(S,x)

((X×Y)* = nN (X×Y)n)

Georges Quénot M2-MOSIG-IAR 2016-2017 4

Single-label loss function

• Quantifies the cost of classification error or the

empirical risk

• Example: 𝐸𝑆 𝑓 = 𝑖=1
𝑖=𝐼 (𝑓 𝑥𝑖 − 𝑦𝑖)

2

• The learning algorithm aims at minimizing the

empirical risk

• If 𝑓 depends on a parameter vector 

(e.g.  = 𝑤, 𝑏 for a linear SVM):


∗ = argmax


𝐸𝑆 𝑓

Georges Quénot M2-MOSIG-IAR 2016-2017 5

Multi-label loss function

• Predict 𝑃 labels for each data sample 𝑥

• 𝑃 decision functions: f = (fp)(1  p  P)

• Example: 𝐿𝑆 𝑓 = 𝑖=1
𝑖=𝐼 𝑝=1

𝑝=𝑃
(𝑓𝑝 𝑥𝑖 − 𝑦𝑖𝑝)

2

• ∗ = argmax

𝐸𝑆 𝑓

• The fp functions may take any real value

Georges Quénot M2-MOSIG-IAR 2016-2017 6

Formal neural or unit

𝑦 =

𝑗

𝑤𝑗𝑥𝑗

z

x1

x2

x3

x4

x5

𝑧 =
1

1 + 𝑒𝑦

linear combination sigmoid function

w

Georges Quénot M2-MOSIG-IAR 2016-2017 7

Neural layer (all to all)

𝑦𝑖 =

𝑗

𝑤𝑖𝑗𝑥𝑗

z1

x1

x2

x3

x4

x5

𝑧𝑖 =
1

1 + 𝑒𝑦𝑖

matrix-vector multiplication per component operation

z2

z3

w1

w2

w3

Georges Quénot M2-MOSIG-IAR 2016-2017 8

Multilayer perceptron (all to all)

o1i1

i2

input
layer

output
layer

i3

i4

o2

o3

o4

hidden
layer

I=X0 X3=OX1 X2

W1 W2 W3

Georges Quénot M2-MOSIG-IAR 2016-2017 9

Feed forward

• Global network definition: 𝑂 = 𝐹 𝑊, 𝐼
(𝐼 ≡ 𝑥 𝑂 ≡ 𝑦 𝐹 ≡ 𝑓 relative to previous notations)

• Layer values: 𝑋0, 𝑋1… 𝑋𝑁
with 𝑋0 = 𝐼 and 𝑋𝑁 = 𝑂 (𝑋𝑛 are vectors)

• Vector of all unit parameters:

𝑊 = 𝑊1,𝑊2 … 𝑊𝑁
(weights by layer concatenated, 𝑊𝑛 are matrices)

• Feed forward: 𝑋𝑛+1 = 𝐹𝑛+1 𝑊𝑛+1, 𝑋𝑛

Georges Quénot M2-MOSIG-IAR 2016-2017 10

Error back-propagation

• Training set: 𝐼𝑝, 𝑂𝑝 1≤𝑝≤𝑃 input-output samples

• 𝑋𝑝,0 = 𝐼𝑝,0 and 𝑋𝑝,𝑛+1 = 𝐹𝑛+1 𝑊𝑛+1, 𝑋𝑝,𝑛

• Note: regarding this notation the vector-matrix

multiplication counts as one layer and the element-wise

non-linearity counts as another one (not mandatory but

greatly simplifies the layer modules’ implementation)

• Error (empirical risk) on the training set:

𝐸 𝑊 = 𝑝 𝐹 𝑊, 𝐼𝑝 − 𝑂𝑝
2
= 𝑝 𝑋𝑝,𝑁 − 𝑂𝑝

2

• Minimization of 𝐸 𝑊 by gradient descent

Georges Quénot M2-MOSIG-IAR 2016-2017 11

Error back-propagation

• Minimization of 𝐸 𝑊 by gradient descent:

– Randomly initialize 𝑊 0

– Iterate 𝑊 𝑡 + 1 = 𝑊 𝑡 − 
𝜕𝐸

𝜕𝑊
𝑡  = 𝑓 𝑡 or  =

𝜕2𝐸

𝜕𝑊2
𝑡

−1

– Back-propagation:
𝜕𝐸

𝜕𝑊𝑛
is computed by backward recurrence from

𝜕𝐹𝑛

𝜕𝑊𝑛
and

𝜕𝐹𝑛

𝜕𝑋𝑛−1
applying iteratively 𝑔 𝑜 𝑓 ′ = 𝑔′𝑜 𝑓 . 𝑓′

Georges Quénot M2-MOSIG-IAR 2016-2017 12

Error back-propagation (adapted from Yann Le Cun)

𝐹1 (𝑊1 , 𝑋0)

𝐹𝑛 (𝑊𝑛 , 𝑋𝑛1)

𝐹𝑁 (𝑊𝑁 , 𝑋𝑁1)

𝐶 (𝑋𝑁 , 𝑌)

𝑋𝑛1

𝑊𝑛

𝑋𝑁1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

𝐸/ 𝑋𝑛1

E/ Xn

𝐸/ 𝑋𝑁1

𝐸/ 𝑋𝑁

𝐸/ 𝑋1

𝐸/ 𝑊𝑛

𝐸/ 𝑊𝑁

𝐸/ 𝑊1

O

𝐸

A
c
c
u
m

u
la

te
 a

n
d
 u

p
d
a
te

Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:

𝑋𝑛 = 𝐹𝑛 (𝑊𝑛 , 𝑋𝑛1)

Partial derivatives with

respect to 𝑊𝑛. For 1 ≤ 𝑛 ≤ 𝑁:

𝜕𝐸

𝜕𝑊𝑛
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝐹𝑛 𝑊𝑛, 𝑋𝑛−1
𝜕𝑊𝑛

We need partial derivatives

with respect to 𝑋𝑛. For 𝑁 :

𝜕𝐸

𝜕𝑋𝑁
=
𝜕𝐶 𝑋𝑁, 𝑂

𝜕𝑋𝑁

Then backward recurrence:

𝜕𝐸

𝜕𝑋𝑛−1
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝐹𝑛 𝑊𝑛, 𝑋𝑛−1
𝜕𝑋𝑛−1

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass
Backward pass



Georges Quénot M2-MOSIG-IAR 2016-2017 13

Layer module (adapted from Yann Le Cun)

𝑋𝑖𝑛

𝑊

𝐸/ 𝑋𝑖𝑛

𝐸/ 𝑋𝑜𝑢𝑡

𝐸/ 𝑊

𝑋𝑜𝑢𝑡

𝐹(𝑊,𝑋𝑖𝑛)
𝜕𝐹 𝑊, 𝑋𝑖𝑛
𝜕𝑊

𝜕𝐹 𝑊,𝑋𝑖𝑛
𝜕𝑋𝑖𝑛

× ×

Notes: 𝑋𝑖𝑛 ≡ 𝑋𝑛−1 , 𝑋𝑜𝑢𝑡 ≡ 𝑋𝑛 , 𝑊 ≡ 𝑊𝑛 and 𝐹 ≡ 𝐹𝑛

Georges Quénot M2-MOSIG-IAR 2016-2017 14

Layer module (adapted from Yann Le Cun)

𝑋𝑖𝑛

𝑊

𝐸/ 𝑋𝑖𝑛

𝐸/ 𝑋𝑜𝑢𝑡

𝐸/ 𝑊

𝑋𝑜𝑢𝑡

𝐹(𝑊,𝑋𝑖𝑛)
𝜕𝑋𝑜𝑢𝑡
𝜕𝑊

𝜕𝑋𝑜𝑢𝑡
𝜕𝑋𝑖𝑛

× ×

𝜕𝐹 𝑊,𝑋𝑖𝑛
𝜕𝑋𝑖𝑛

≡
𝜕𝑋𝑜𝑢𝑡
𝜕𝑋𝑖𝑛

𝜕𝐸

𝜕𝑋𝑖𝑛
=
𝜕𝑋𝑜𝑢𝑡
𝜕𝑋𝑖𝑛

𝜕𝐸

𝜕𝑋𝑜𝑢𝑡

𝜕𝐹 𝑊,𝑋𝑖𝑛
𝜕𝑊

≡
𝜕𝑋𝑜𝑢𝑡
𝜕𝑊

𝜕𝐸

𝜕𝑊
=
𝜕𝑋𝑜𝑢𝑡
𝜕𝑊

𝜕𝐸

𝜕𝑋𝑜𝑢𝑡

Georges Quénot M2-MOSIG-IAR 2016-2017 15

Linear module (adapted from Yann Le Cun)

𝑋𝑖𝑛

𝑊

𝐸/ 𝑋𝑖𝑛

𝐸/ 𝑋𝑜𝑢𝑡

𝐸/ 𝑊

𝑋𝑜𝑢𝑡Forward pass
Backward pass

𝑋𝑜𝑢𝑡 = 𝑊𝑋𝑖𝑛
𝜕𝐸

𝜕𝑊
= 𝑋𝑖𝑛

𝜕𝐸

𝜕𝑋𝑜𝑢𝑡

𝜕𝐸

𝜕𝑋𝑖𝑛
=
𝜕𝐸

𝜕𝑋𝑜𝑢𝑡
𝑊

Note: 𝑋𝑖𝑛 and 𝑋𝑜𝑢𝑡 are regular (column) vectors and 𝑊 is a matrix while E/ Xin

and 𝐸/ 𝑋𝑜𝑢𝑡are transpose (row) vectors and 𝐸/ 𝑊 is a transpose matrix (for

the vectors, this is because d𝐸 = (𝐸/ 𝑋).d𝑋). 𝐸/ 𝑊 is the outer product of

the regular and transpose vectors 𝑋𝑖𝑛 and 𝐸/ 𝑋𝑜𝑢𝑡 .

.

Georges Quénot M2-MOSIG-IAR 2016-2017 16

Pointwise module (adapted from Yann Le Cun)

𝑋𝑖𝑛

𝐵

𝐸/ 𝑋𝑖𝑛

𝐸/ 𝑋𝑜𝑢𝑡

𝐸/ 𝐵

𝑋𝑜𝑢𝑡

𝑋𝑜𝑢𝑡 = 𝑓(𝑋𝑖𝑛 + 𝐵)
𝜕𝐸

𝜕𝐵
= 𝑓′(𝑋𝑖𝑛 + 𝐵)

𝑇.
𝜕𝐸

𝜕𝑋𝑜𝑢𝑡

𝜕𝐸

𝜕𝑋𝑖𝑛
=
𝜕𝐸

𝜕𝑋𝑜𝑢𝑡
. 𝑓′(𝑋𝑖𝑛 + 𝐵)

𝑇

Note: 𝐵 is a bias vector on the input. 𝑋𝑖𝑛, 𝑋𝑜𝑢𝑡 and 𝐵 are regular (column) vectors

while E/ Xin and 𝐸/ 𝑋𝑜𝑢𝑡 and 𝐸/ 𝐵 are transpose vectors. 𝑓 is a scalar

function applied pointwise on 𝑋𝑖𝑛 + 𝐵. 𝑓′ is the derivative of 𝑓 and is also applied

pointwise. The multiplication by 𝑓′(𝑋𝑖𝑛 + 𝐵)
𝑇 is also performed pointwise.

Georges Quénot M2-MOSIG-IAR 2016-2017 17

Convolutional layers

• Alternative to the “all to all” connections

• Preserves the image topology via “feature maps”

• Each layer is a “stack” of features maps

• Each map points is connected to the map points
of a neighborhood in the previous layer

• Weights between maps are shared so that they
are invariant by translation

• Resolution changes across layers: stride and
pooling

• Example: AlexNet

Georges Quénot M2-MOSIG-IAR 2016-2017 18

Convolutional layers

Classical image convolution (2D to 2D):

Convolutional layer (3D to 3D):

k and l: indices of the feature maps in the input
and output layers

m and n: within a window around the current
location, corresponding to the feature size

Georges Quénot M2-MOSIG-IAR 2016-2017 19

ImageNet Challenge 2012

[Krizhevsky et al., 2012]

• 7 hidden layers, 650K units, 60M parameters (W)

• GPU implementation (50× speed-up over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, NIPS 2012

Georges Quénot M2-MOSIG-IAR 2016-2017 20

ImageNet Classification 2012 Results

Krizhevsky et al. -- 16.4% error (top-5)
Next best (non-convnet) – 26.2% error

Georges Quénot M2-MOSIG-IAR 2016-2017 21

ImageNet Classification 2013 Results

http://www.image-net.org/challenges/LSVRC/2013/results.php

Demo: http://www.clarifai.com/

http://www.image-net.org/challenges/LSVRC/2013/results.php
http://www.clarifai.com/

Georges Quénot M2-MOSIG-IAR 2016-2017 22

Going deeper and deeper

For comparison, human performance is 5.1% (Russakovsky et al.)

Georges Quénot M2-MOSIG-IAR 2016-2017 23

Engineered versus learned descriptors

• Classical “classification pipeline”

– Extraction(s) – [aggregation] – optimization(s) –
classifier(s) – one or more levels of fusion – re-scoring
(non exhaustive example)

– Most of the stages are explicitly engineered: the form
of descriptors or processing steps has been thought
and designed by a skilled engineer or researcher

– Lots of experience and acquired expertise by
thousands of smart people over tens of years

– Learning concerns only the classifier(s) stages and a
few hyper-parameters controlling the other ones

– Almost everything has been tried

– The more you incorporate, the more you get (at a cost)

Georges Quénot M2-MOSIG-IAR 2016-2017 24

Engineered versus learned descriptors

• Deep learning pipeline: MLP with about 8 layers
– Advances in computing power (Tflops): large networks possible

– Algorithmic advance: combination of convolutional layers for the
lower stages with all-to-all layers; the topology of the image is
preserved in the lower layers with weights shared between the
units within a layer

– Algorithmic advances: NN researchers finally find out how to have
back-propagation working for MLP with more than three layers

– Image pixels are entered directly into the first layer

– The first (resp. intermediate, last) layers practically compute low-
level (resp. intermediate level, semantic) descriptors

– Everything is made using a unique and homogeneous architecture

– A single network can be used for detecting many target concepts

– All the level are jointly optimized at once

– Requires huge amounts of training data

