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Learning

• Machine learning: learning from data.
• Unsupervised learning:

– Without human intervention,
– Simple data,
– Automatic class extraction (clustering).

• Supervised learning:
– With human intervention (annotation),
– Labeled (or annotated) data
– Classification (predefined classes),
– Regression (continuous values).
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Supervised learning
• A machine learning technique for creating a function from training 

data.
• The training data consist of pairs of input objects (typically vectors) 

and desired outputs.
• The output of the function can be a continuous value (regression) 

or a class label (classification) of the input object.
• The task of the supervised learner is to predict the value of the 

function for any valid input object after having seen a number of 
training examples (i.e. pairs of input and target output).

• To achieve this, the learner has to generalize from the presented 
data to unseen situations in a “reasonable” way.

• The parallel task in human and animal psychology is often referred 
to as concept learning (in the case of classification).

• Most commonly, supervised learning generates a global model
that helps mapping input objects to desired outputs.

(http://en.wikipedia.org/wiki/Supervised_learning)
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Supervised learning
• Target function:  f : X → Y

x → y = f(x)
– x : input object (typically vector)
– y : desired output (continuous value or class label)
– X : set of valid input objects
– Y : set of possible output values

• Training data:  S = (xi,yi)(1 ≤ i ≤ I)
– I : number of training samples

• Learning algorithm:  L : (X×Y)* → YX

S         → f = L(S)

• Regression or classification system:  y = f(x) = [L(S)](x) = 
g(S,x)

( (X×Y)* = ∪n∈N (X×Y)n )
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Model based supervised learning
• Two functions, “train” and “predict”, cooperating 

via a Model

• General regression or classification system: 
y = [L(S)](x) = g(S,x)

• Building of a model (train):
M = T(S)

• Prediction using a model (predict):
y = [L(S)](x) = g(S,x) = P(M,x) = P(T(S),x)
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Supervised learning
Classification problem

Train

Model

Predict

Training samples

Testing samples Predicted classes

S = (xi,yi)(1 ≤ i ≤ I)

M = T(S) = T((xi,yi)(1 ≤ i ≤ I))

x y = P(M,x) = P(T(S),x)
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Classification methods

• Gaussian Mixture Models
• Hidden Markov Models
• Decision trees
• Genetic algorithms
• Artificial neural networks
• K-nearest neighbor
• Linear discriminant analysis
• Support vector machines
• Minimum message length
• And many more.
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k nearest neighbors (k-NN)
• No training : M = T(S) = S
• Compute the distances from the unknown 

sample x to all the training samples xi,
• Select the k closest xi,
• Compute the class of x from the classes of the 

closest xi’s:
– k = 1 : the class of x is the class of the closest xi,
– k is odd and there are only two classes : majority 

vote.
• k-NN is a non linear classifier and can easily 

model classes with very irregular shapes,
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k nearest neighbors (k-NN)
• 1-NN is a simple and quite often excellent 

classifier, it is often chosen as a baseline for 
comparison across systems,

• 3-NN is more robust against isolated outliers,
• Improvement: weight class values according to the 

(inverse) distance to the query point
• May be slow for classification because of the need 

to compute the distances with all the training 
samples

• However a single NN search may be performed for 
many classifications at once

• May be used for indexing (off line) or for search (on 
line, “similarity search”)
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Computation of distance for k-NN
• Euclidian distance, angle between vectors,
• Comparison between a query vector to all the vectors 

in the database (no pre-selection),
• “Small” number of dimensions ( < 10) : clustering 

techniques, hierarchical search,
• “Medium” number of dimensions ( ~ 10+) : methods 

based on space partitioning,
• “Large” number of dimensions( >> 10 ) : no known 

method faster that a full linear scan,
• Reduction of the number of dimensions by Principal 

Component Analysis.
• Approximate Nearest Neighbors: LSH
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Locality Sensitive Hashing (LSH)

• Hashing: store many data samples into a table of 
fixed length; data placed into “buckets”

• “Regular” Hashing: avoid collision for faster 
access, polynomial and multiples XOR functions; 
any type of data

• Locality preserving hashing: favor collisions of 
“close” samples into the same buckets; data from 
highly dimensional Euclidean space, multiple 
projection functions
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LSH: Multiple projection functions

• Set of random directions

• Projection on the axes → one component per 
direction

• Split values on axes according to a data 
distribution (two, four, eight … intervals)

• One or more bits per direction (generally one)

• Concatenation for producing the bucket index

• Multiple projections: matrix vector multiplication
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LSH: Use of multiple tables
• Build many LSH tables

• For each table, select all the test samples that fall in the 
same bucket than the query sample

• Compute the Euclidean distance only for those samples

• Sort the test samples according to the Euclidean distances

• Euclidean distances are not approximate but some 
samples close to the query may not fall in the selected 
buckets

• The size and number of tables must be chosen so that 
enough and not too many samples are found for a query
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LSH: Use of hamming distance

• Build binary codes (bucket index) as for one LSH table

• Hamming distance: number of bit locations in which the 
binary values differ: bitwise XOR followed by a count on 1 
bits; modern processors have this as a single instruction

• Compute the Hamming distance between the query and 
all test samples: much faster than Euclidean distance

• Select samples with closest Hamming distance

• Compute the Euclidean distance only for those samples

• Similar to multiple tables from there
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Support Vector Machines (SVM)
• Empirical risk minimization
• Linear classifier with maximum margin

• The “kernel trick” permits non linear classification also 
with maximum margin and minimum empirical risk
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SVM linear classification
• Maximum-margin 

hyperplanes for a SVM 
trained with samples 
from two classes.

• Samples along the 
hyperplanes are called 
the support vectors.

• The separated 
hyperplane is defined 
by:

wT.x − b = 0
• The margin is 2/|w|
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SVM linear classification
• If the data is linearly separable:

if yi = −1 : wT.xi − b ≤ −1       if yi = +1 : wT.xi − b ≥ 1

• This can be rewritten as:
yi.(wT.xi − b) ≥ 1

• SVM problem primal form:

Minimize:               subject to:                         ,   1 ≤ i ≤ n.

• SVM problem dual form:

maximize:                                           subject to    αi ≥ 0

αi ’s are non zero only for the support vectors.
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SVM linear classification

• Soft margin, primal form:

→

→

• Dual form:

αi ≥ 0 → 0  ≤  αi ≤ C

• Allows for “misclassified” samples.
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SVM non-linear classification
• Decision function:

• Quadratic form maximization:

• Kernel trick:                 →

• Φ : possibly non-linear function, does not need to be 
computed, implicitly defined via the kernel (K) definition, 
linear separation in the im(Φ) space, may be non linear 
in the original space.
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SVM non-linear classification

• Mercer condition : K(xi,xj) must be definite positive.

• Common kernels:

– Polynomial (homogeneous): 

– Polynomial (inhomogeneous): 

– Radial Basis Function:

– Sigmoid:                                        , for some (not every) κ > 0 and c < 0
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Classification systems
• Classification at the global level:

– Absence or presence of a concept,
– Probability of presence of a concept,
– No search for position in the image.

• Classification at the local level :
– At the pixel level,
– By block,
– By region.

• Extraction of descriptors,
• Training and recognition,
• Systems with several levels: pipeline.
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Classification at the pixel level
• Color,
• Texture (frequential composition in the neighborhood),
• Gradients and similar (combinations of various spatial 

derivatives),
• Search for a small number (~15) of classes with a 

meaning at both the signal and semantic levels: sky, 
greenery, water, building, clouds, road/track, human 
skin, …

• Not much used for direct recognition because not very 
reliable and useful,

• Often used as “intermediate level material” for 
recognition at the region or image level :

– Vector representing the proportions or probabilities of 
presence of the different classes at the level of the considered 
area,

– Useful and efficient even with poor local performances
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Classification  at the block or region level

• Color : moments, histograms, corrélograms,
• Texture : Gabor transforms,
• Histograms of gradient directions,
• Statistics on classes recognized at the pixel level.

• Search for a small number (~15) of classes with a 
meaning at both the signal and semantic levels,

• Not much used for direct recognition,
• Often used as “intermediate level material” for 

recognition at the image scale level.
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Classification  at the block or region level

• Choice of regions : segmentation algorithms based on 
descriptors or classes associated to the pixels (targets 
a natural segmentation).

• Selection of blocks :
– Regular grids, overlapping or non-overlapping blocks,
– Window functions (2D Hamming, overlapping blocks),
– Heuristical segmentations (center is more important)
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Classification at the image level

• Color : moments, histograms, correlograms,
• Texture : Gabor transforms,
• Histograms of gradient directions,
• Shapes (contours),
• Points of interest,
• Statistics on classes recognized at the pixel, regions or 

block level,
• Face detection.

• Classification of a large number of classes : from 10 
(TRECVID 2003) to 850 (LSCOM Ontology)
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Classification at the image level
Pipeline architecture (IBM, CMU, MediaMill, LIG, …)
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LSCOM
Large Scale Concept Ontology for Multimedia

• LSCOM: 850 concepts:
– What is realistic (developers)
– What is useful (users)
– What makes sense to humans (psychologists)

• LSCOM-lite: 39 concepts, subset of LSCOM.

• Annotation of 441 concepts on ~65K subshots 
of the TRECVID 2005 development collection.

• 33,508,141 concept × annotations → About 
20,000 hours or 12 man × years effort at 2 
seconds/annotation.
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Hyper-parameter tuning
• Parameters:

– Parameters of the model learnt from training data

– e.g. values of the support vectors (xi) and Lagrange coefficients 
(αi) in SVMs

• “Hyper”-parameters:
– Parameters that controls how the model (and “standard” 

parameters) are learnt

– e.g. soft margin coefficient (C) in SVMs and the scale 
parameter in the RBF version (γ)

– Possibly also class weights

– Controls “how well” the classification algorithm generalizes 
from training data, especially the under fit versus over fit 
compromise
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Hyper-parameter tuning, validation set
• A dataset used for training cannot be used for 

evaluation (over-fitting)

• Standard method: use different datasets for training 
and performance evaluation, each with annotated 
samples.

• Tuning of hyper-parameters on the test set is bad 
(over-fitting again)

• Good solution: use three datasets: train, val and test, all 
with annotated samples

• Train and evaluate several hyper-parameter values 
between train and val and then apply to test.
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Hyper-parameter tuning, validation set

• Parameter tuning: selection of the optimal hyper-
parameter combination by training on train and 
evaluating on test.

• Actual evaluation: keep the optimal hyper-parameter 
values, train on train+val and evaluate on test.

Train Val Test

Train Val Test
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No validation set: split the training set

• Split into two equal parts, use first part as train and 
second part for validation (“one-fold” cross-validation)

• Two-fold cross-validation

Dev Test

Train Val Test

Train Val Test

TrainVal Test



Georges Quénot                     M2-MOSIG-IAR                        2016-2017 34

Two-fold cross-validation

• Use two parts alternatively for training and validation

• The whole development set is used both for training and 
for evaluation during hyper-parameter tuning

• Tuning is done on MAP(hyper-parameters)
– Either average the MAP on the two validations
– Or compute a global MAP on the concatenated scores

• Training is done on half of the development set each time

Train Val Test

TrainVal Test
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N-fold cross-validation
• Use N parts of 1/N od the development set alternatively 

for validation and the complement ((N-1)/N) for training

• The whole development set is used both for training 
and for evaluation during hyper-parameter tuning

• Training is done on (N-1)/N of the development set 
each time, the greater N, the better.

Val Test

Train TestTrain

Train Test

Train

Val

Val
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Probabilized output
• SVM scores ranges from −∞ to +∞

• Probabilities are expected to range from 0 to 1

• Sigmoid transform: p(score) = 1/(1+e(A*score+B))

• Additional hint: among the samples within a 
small interval around p, a fraction of about p 
would have positive labels

• Platt’s method: learn A and B by cross-
validation to optimally satisfy the above hint

• Probability normalized outputs better for late 
fusion
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